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Abstract. Choreographies offer means to capture global interactions
between business processes of different partners. BPEL4Chor has been
introduced to describe these interactions using BPEL. Currently, there
are no formal methods available to verify BPEL4Chor choreographies. In
this paper, we present how BPEL4Chor choreographies can be verified
using Petri nets. A case study undermines that our verification techniques
scale. Additionally, we show how the verification techniques can be used
to generate a stub process for a partner taking part in a choreography.
This is especially useful when the behavior of one participant is intended
to follow the corresponding requirements of the other participants. Thus,
the missing participant behavior can be generated and the error-prone
design of that participant can be skipped.

Key words: BPEL4Chor, choreography, partner generation, Petri nets,
service-oriented analysis and design

1 Introduction

The Web Services Business Process Execution Language (WS-BPEL or BPEL for
short, [1]) is the de facto standard to describe executable business processes as
orchestrations of Web services. A choreography describes the interaction of several
processes from a global perspective. In particular, it defines the order in which
processes exchange messages. BPEL4Chor [2] is a choreography language based
on BPEL. Each participant is associated with a participant behavior description
(PBD) that describes the participant’s behavior using abstract BPEL. The
interconnection between the activities of different PBDs is formed by message
links.

In this paper, we show how an existing tool chain [3,4] can be extended to
analyze a BPEL4Chor choreography (Fig. 1). By mapping BPEL4Chor to Petri
nets, we also provide a formal model for BPEL4Chor.

If two business partners agree on a choreography, but need a third business
partner to achieve their goal, they also have to specify the behavior of the
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Fig. 1. Proposed tool chain to analyze BPEL4Chor choreographies.
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third party. We show how the behavior of the third party can be derived from
existing participants in a choreography. The current algorithms assure deadlock-
freedom for the synthesized participant if such a participant exists. We are aware
that there are other possibilities for defining “proper interaction”. Nevertheless,
deadlock-free communication will certainly be part of any more sophisticated
correctness definition, so the presented approach can be seen as a step towards a
more sophisticated solution.

Section 2 introduces BPEL4Chor and open workflow nets (oWFNs), which
are used to capture the semantics of BPEL4Chor. After presenting in Sect. 3 how
BPEL4Chor can be translated into oWFNSs, Sect. 4 shows how a BPEL4Chor
choreography can be analyzed theoretically. Section 5 puts that analysis into
practice and shows how the proposed tool chain is used to analyze a BPEL4Chor
choreography and that it scales up to 1,000 participants. Finally, Sect. 6 concludes,
compares the presented work with related work, and describes future research
directions.

2 Background and Motivation

A choreography described by BPEL4Chor consists of (i) the participant topology,
(ii) the participant behavior descriptions, and (iii) the participant groundings
(cf. Fig. 2 and [2]). The participant topology lists all participants taking part
in the choreography and all message links connecting activities of different
participants. A message link states that a message is sent from the source of
the message link to its target. Every participant has a certain type. For each
participant type, a participant behavior description (PBD) defined in BPEL
is given. In this description, port types and operations are omitted and thus
the dependency on interface specifications such as WSDL [5] is removed. If
the choreography has to be executed, every target of a message link has to be
grounded to a WSDL operation so that the other participants can use the offered
operation. This grounding is done after the choreography design itself, which
enables choreography specification reuse. Since BPEL is used to specify the
behavior of every participant, the development of executable BPEL processes
following this behavior can be done by using the PBD of a participant as a
basis and adding missing information. Other languages can be used to provide
implementations of local behavior, but using BPEL is a seamless choice based on
BPEL4Chor.
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Fig. 2. BPEL4Chor artifacts. ([2])

A choreography always describes the behavior of all participants. Thus, a
closed world is assumed. Refer to the booking scenario in Fig. 3. A traveler
requests booking of a flight at a travel agency. The travel agency requests a price
quote from every airline in a set of airlines. The cheapest airline is selected and
the tickets are ordered there. The airline replies with a confirmation and sends
an electronic ticket directly to the traveler. There is no message going to an
undefined participant. The observable behavior of all participants is specified.
Note that BPMN [6] is used for visualization only. The choreography itself is
specified using BPEL4Chor.
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Fig. 3. Choreography of a Booking Scenario. ([2])
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2.1 Open Workflow Nets

Open workflow nets (OWFNs) [7] are a special class of Petri nets. They generalize
classical workflow nets [8] by introducing an interface for asynchronous message
passing. Intuitively, an oWFN is a Petri net together with (i) an interface,
consisting of input and output places, (ii) an initial marking mg, and (iii) a set
2 of distinguished final markings. Final markings represent desired final states
of the net and help to distinguish desired final states from unwanted deadlocks.
Throughout this paper, we use the term ‘deadlock’ for a nonfinal marking which
does not enable a transition (i.e., an unwanted blocking of the net). Figure 4
shows an oWFN modeling the traveler service of the choreography depicted in
Fig. 3.

Fig. 4. An oWFN modeling the traveler service.
The interface consists of Py, = {ticket, itinerary} and
Pt = {trip}, depicted on the dashed frame. The
traveler first plans the trip and then sends an or-
der. Then, he concurrently receives a ticket and an
itinerary. The set of final markings 2 = {[p1, p2|}
consists of the single marking with one token on
place p; and on p;.

ticket C

The interplay of two oWFNs N and M is represented by their composition,
denoted by N & M. Thereby, we demand that the nets only share input and
output places such that for some input places of NV exist corresponding output
places of M, and vice versa. The oWFN N & M can then be constructed by
merging joint places and merging the initial and final markings. Merged places
become internal to N @ M. Due to the closed world assumption in BPEL4Chor,
the composition of all oWFNs modeling services of a choreography results in a
closed oWFN; that is, an oWFN with empty interface.

oWFNs provide a simple but formal foundation to model services and their
interaction. They allow — like common Petri nets — for diverse analysis methods
of computer-aided verification. The explicit modeling of the interface further
allows to analyze the interaction behavior of a service [3,4]. An important property
of an oWFN is whether it is possible to communicate deadlock-freely with it. An
oWFN N is called controllable, if there exists an oWFN M such that N & M is
free of deadlocks. Like the soundness property for workflow nets, controllability [9]
can be regarded as a minimal correctness criterion for communicating services.
Obviously, the net depicted in Fig. 4 is controllable.

2.2 Petri Net Semantics for BPEL

The BPEL [1] language provides an operational semantics defining the behavior
of each language construct and the behavior of composites of constructs. To
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formally verify BPEL processes, a formal semantics is needed. Therefore, a lot of
work has been conducted to define a formal semantics for the behavior of BPEL
processes. The approaches cover many formalisms such as Petri nets, abstract
state machines (ASMs), finite state machines, process algebras, etc. (see [10] for
an overview).

The translation of a BPEL process intro a Petri net model is guided by the
syntax of BPEL. In BPEL, a process is built by plugging instances of language
constructs together. Accordingly, each construct of the language is translated
separately into a Petri net. Such a net forms a pattern of the respective BPEL
construct. Each pattern has an interface for joining it with other patterns as
is done with BPEL constructs. Also, patterns capturing BPEL’s structured
activities may carry any number of inner patterns as its equivalent in BPEL
can do. The collection of patterns forms the Petri net semantics for BPEL.
While the original semantics in [11] is feature complete (i.e., capturing both
the standard as well as the exceptional behavior of a BPEL process), we only
consider the positive control flow in this paper to ease the presentation. The
presented approach can, however, be canonically enhanced to also model fault,
compensation and exception handling of the participating BPEL processes.

3 Translating BPEL4Chor Choreographies into Petri Nets

To translate a BPEL4Chor choreography into a Petri net model, we extend the
translation approach presented in [3]. Basically, the translation is enhanced to
support composition and instantiation.

Composition The tool chain presented in [3] is limited to the translation of
a single process into a Petri net model. To translate BPEL4Chor, we translate
the participating BPEL processes one by one and compose the resulting oWFNs.
The information how input and output places of different processes are merged
can be derived from the participant topology. As the composition of oWFNs is
associative, the order of composition is not important. Furthermore, the resulting
nets can be composed incrementally. Therefore, at most two nets have to be
kept in memory during the translation process. Finally, structural reduction
techniques can be applied already during the composition process. Not only the
final composition, also the intermediate oWFNs can be reduced. This interleaving
of structural reduction and composition does not only allow smaller nets, but
also may speed up the translation process as the size of the composition grows
more slowly.

Instantiation The translation process is, however, not restricted to choreogra-
phies in which each process is instantiated just once. For instance, the choreogra-
phy example presented in Fig. 3 models a choreography that communicates with
a set of airlines. Again, the participant topology holds the necessary information
about which process has to be instantiated. Admittedly, the topology does not
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provide the number of instances of each participant. We therefore demand an
upper bound of instances to be specified for each participant set. While this
upper bound may not be necessary when BPEL4Chor is just a means to describe
choreographies, its definition is reasonable when such a choreography should be
analyzed.

To introduce instantiation to the translation process, the following scenarios
are possible:

i. message exchange between two uninstantiated participants (e.g., the trip
order sent by the traveler to the agency),

ii. message exchange between an uninstantiated participant and one particular
instantiated participant (e.g., the price request sent by the agency to an
airline instance),

iii. message exchange between an uninstantiated participant and an arbitrary
chosen instantiated participant (e.g., the e-ticket sent by the selected airline
to the traveler), and

iv. message exchange between two instantiated participants (not present in our
example choreography).

For an example of these scenarios, consider the BPEL code snippet of the
agency process depicted in Fig. 5(a). For two airline instances, the resulting
subnet is depicted in Fig. 5(b). The message trip sent by traveler to the agency
is an example of the first scenario, as both services (traveler and agency) are
uninstantiated. Therefore, the receipt of the trip message is modeled by a single
transition, namely t;. The price request sent to and the corresponding price
quotes received from the airline instances are examples for the second scenario.
Therefore, the communicating transitions (to—ts) and the connected interface
places (price.1, price.2, quote.1, and quote.2) are instantiated. The order sent to
only one airline instance is an example for the third scenario.

Translating the example choreography The presented translation approach
was implemented in our compiler BPEL20WFN?. BPEL20WFN enables us to
translate real-world BPEL choreographies into Petri net models. We translated
the example choreography with five airline instances into a Petri net. The resulting
net has 103 places and 81 transitions. Structural reduction simplified the net to
63 places and 41 transitions. The final marking of the composition is constructed
canonically: it consists of the single state in which all participating services have
completed faultlessly.

4 Analyzing BPEL4Chor Choreographies

In this section, we show how to analyze BPEL4Chor choreographies using Petri net
models. We distinguish two analysis approaches: analysis of closed choreography

3 BPEL20WFN is available at www.gnu.org/software/bpel2owfn.
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<receive wsu:id="ReceiveTripOrder" />
<forEach wsu:id="fe_RequestPrice" parallel="yes">
<scope>
<sequence>
<invoke wsu:id="RequestPrice" />
<receive wsu:id="ReceiveQuote" />
</sequence>
</scope>
</forEach>
<opaqueActivity name="SelectAirline" />
<invoke wsu:id="OrderTickets" />

(a) code snippet of the agency process  (b) resulting subnet of the agency oWFN

Fig. 5. Example for the instantiation of transitions and interface places. The
BPEL process of the agency (a) is translated into an oWFN (b).

models and analysis of open choreography models. A closed choreography model
(i.e., an oWFN with empty interface) can be analyzed in isolation and can be used
to verify properties of a complete choreography. For example, deadlock-freedom
or the absence of unwanted communication scenarios can be proven before the
actual implementation and deployment of the participant services. In contrast,
an open choreography model (i. e., an oWFN with nonempty interface) can be
used during the design of the overall choreography. A choreography in which one
participating service is missing can, for instance, be completed by synthesizing
the missing participant service. This synthesized service is then guaranteed to
participate deadlock-freely with the other participants.

4.1 Analyzing Closed Choreographies

Due to the closed-world assumption of BPEL4Chor, the resulting Petri net model
of a completely specified BPEL4Chor choreography is a closed system; that is, a
Petri net with empty interface. During the translation, each interface place of an
intermediate oWFN, is merged with a corresponding interface place of another
intermediate oWFN. Closed systems do not have an environment and thus their
state space can be calculated and analyzed without considering the environment
of the system. As Petri nets offer a broad variety of analysis methods, a lot of
interesting properties can be investigated:

— Is the choreography free of deadlocks and livelocks? Will each participating
service eventually reach a final state?

— Will a certain activity of a participant be executed? Does there exist a state
in which more than one message is pending on a communication channel?
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— What is the minimal/maximal number of messages to be sent to reach a final
state of the choreography?

— Will a participant always receive an answer? Can a participant enforce the
receipt of a certain message?

These questions can be formulated in terms of reachability or temporal logic
properties and be checked using existing model checking tools.

Analyzing the example choreography We analyzed the Petri net model
of Sect. 3 with the Petri net verification tool LoLA [12], a state-of-the-art
model checker which implements several state space reduction techniques. The
unreduced state space consists of 3,843 states. The Petri net model contains an
unwanted deadlock. We could map this deadlocking state of the model back to
the participating services with the help of a witness path. A witness path is a
transition sequence leading from the initial to the dead marking. The deadlock
occurs in the choreography, when the agency’s choice for an airline takes too
much time, or when the message sent to the chosen airline is delayed. In this
case, the timeout (i.e., the onAlarm branch) of all participating airlines ends
their instances and the agency deadlocks waiting for a confirmation message from
the chosen airline.

Correcting the example choreography There are many ways to correct the
deadlocking choreography. A straightforward attempt would be to replace the
airline service’s timeout by a message sent by the agency. This would, however,
add an unrealistic dependency between the agency and the airline. To this end,
we decided to keep the timeout, but at the same time ensure a response of the
airline service even when a ticket order is received after the timeout.

Hence, we changed the choreography as follows (cf. gray shapes in Fig. 6). The
airline’s behavior does not change if the agency’s ticket order is received before
the timeout occurred and if the timeout occurs, the airline service’s instance still
terminates. However, a new branch was added to the airline: this branch models
the situation in which the agency’s ticket order is received after the timeout. In
this case, a new instance of the airline service is created which rejects the ticket
order. The services of the agency and the traveler are adjusted to handle this
rejection.

Analyzing the new example choreography We translated the new chore-
ography with five airline instances into a Petri net model. Due to the newly
introduced activities, its structure and its state space have grown. The (struc-
turally reduced) net has 113 places and 97 transitions. The model has 3,812
states and does not contain deadlocks except final states. With the help of LoLA,
we could also verify that the choreography’s participating services do not livelock
and will always reach a final state.
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Fig. 6. Deadlock-free Choreography of a Booking Scenario. The two start events
at the airline process denote a BPEL pick activity.

4.2 Analyzing Open Choreographies

While the analysis of closed choreographies may help to find design flaws in the
interaction between all participating services, Petri net models may also support
the design of choreographies. To this end, controllability (cf. Sect. 2.1) is an
important property. In [3], we presented an algorithm to decide controllability of
an oWFN constructively. This algorithm is implemented in the tool Fiona®*. If
a partner exists such that the composition is deadlock-free, it is automatically
generated.

Let Ny,..., Ni_1 be the oWFNs of the already known participant services of
an open choreography. Their composition, N1 @ ... ® Ni_1, is an oWFN with
nonempty interface. If this net is controllable, then there exists an oWFN Ny
such that Ny @ ... ® Ni_1 ® N}, is deadlock-free. Thus, Fiona can be used to
“complete” a given open choreography by synthesizing the model Ny, of the missing
participant.

Synthesizing a traveler service Consider again the fixed choreography of
Fig. 6. If, for example, only the services of the agency and the airline were
specified, the blueprint of a traveler service could be synthesized. If such a service
exists (i.e., the composition of the existing services is controllable), it completes
the choreography which is then deadlock-free by construction. To this end, the
incomplete choreography is translated into an oWFN using BPEL2o0WFN. This
oWFN is then analyzed by Fiona. If the net is controllable, a service automaton
modeling the behavior of a partner service is synthesized. This automaton can
be translated into an oWFN, for example using the tool Petrify [13].

* Fiona is available at www.informatik.hu-berlin.de/top/tools4bpel/fiona.
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ticket C

(a) synthesized traveler (b) two synthesized airline instances

Fig. 7. Synthesized services. (a) A traveler service synthesized to fit in the new
choreography. The gray transitions are concurrent, whereas in the choreography
(cf. Fig. 6), the ticket is received after the itinerary. (b) Two synthesized air-
line instances to fit in the first choreography (cf. Fig. 3). The gray transitions
synchronize the instances. The net has two final markings: 2 = {[p2, p3], [p1, pa]}

The synthesized oWFEN of a traveler service that completes the choreography
is depicted in Fig. 7(a). This traveler service slightly differs from the traveler
service in the new choreography (cf. Fig. 6). Firstly, there exists no transition
modeling the planning of the trip, because such a transition is internal (i.e., not
communicating), but the service was synthesized based on the external behavior;
that is, only the interaction of the service was taken into account. Secondly,
the itinerary and the ticket can be received concurrently. This is due to the
asynchronous communication model: messages can keep pending on the interface,
so there is no order in which they have to be received. From this oWFN, an
abstract BPEL process can be derived using existing approaches [14]. As this
translation is out of scope of this paper, we do not present it here.

Limits of the partner synthesis The presented approach allows to synthesize
a service that interacts deadlock-freely with the other participating services of
the choreography if such a service exists; that is, if the open choreography is
controllable. At present, it is, however, not possible to synthesize a set of services
which complete a choreography.

As an example, consider again the first (deadlocking) choreography of Fig. 3.
The choreography deadlocks because of the airline service’s timeout mechanism.
If we synthesize the airlines, the result will be a single oWFN modeling the
behavior of all airline service’s instances.

Figure 7(b) depicts the synthesized oWFN modeling two airline instances.
This service receives two price requests from the agency addressed to the different
instances (input places price.l and price.2) and sends two price quotes. Then,

5

5 This structure of this oWFN was slightly adjusted to simplify the presentation.
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it waits to receive one ticket order (either on input place order.l or order.2)
and answers it accordingly. The resulting choreography would be deadlock-free.
However, the airline’s instances are not independent of each other. They are
implicitly synchronized by the incoming arcs of the transitions receiving the orders.
If this service had to be split into two services, explicit synchronization messages
would have to be added to maintain deadlock-freedom. Still, the synthesized
airline model can be seen as a starting point for further refinement.

Another issue of the partner synthesis are causalities. As sketched in the
description of the generated traveler service (cf. Fig. 7(a)), a generated partner
might send and receive messages in different — mostly less constraint — orders.
This might yield to synthesized services which send acknowledgment messages
before actually receiving the corresponding request. In such cases, the causality
between the request and the acknowledgment is ignored. In [15], we introduced
behavioral constraints into the synthesis process to rule out such implausible
behavior.

Each of the participating services of both choreographies are controllable.
As the first choreography shows, their composition may still deadlock. Such
deadlocking scenarios are not obvious even for small choreographies. Therefore,
design and verification of deadlock-free choreographies with a larger number of
participants and/or more complex participant services are even more challenging
if not impossible to do manually.

5 Case Study

In the previous sections, we analyzed the first and the second choreography
(cf. Fig. 3 and Fig. 6, resp.) with five airline instances. For these five airlines,
the resulting models already had over 3,000 states. The states space grows
dramatically when the number of airlines is further increased (cf. Table 5). For
ten airlines, the model has over nine million states, and for larger numbers, the
full state space could not be constructed due to memory overflow® (denoted as
‘—in Table 1).

However, several state space reduction rules can be applied to reduce the
size of the state space while still being able to analyze desired properties such
as deadlock-freedom. In our particular example, we applied symmetry reduction
and the partial order reduction, both implemented in LoLA (see [12] for further
references). The symmetry reduction exploits the fact that all airline instances
have the same structure. This regular structure induces symmetries on the net
structure itself, but also on the state space of the choreography. Intuitively, the
instances act of the airline service act ‘similar’ or ‘symmetric’. During the state
space construction, symmetric states are merged. The partial order reduction
follows a different approach: as all instances run concurrently, any order of
transitions of the airline instances are represented in the state space. These

5 The experiments where made with two gigabytes of memory.
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Table 1. Net sizes (structurally reduced) and state spaces (full, reduced us-
ing symmetry reduction, reduced using partial order reduction, and reduced
combining partial order reduction and symmetry reduction).

choreography first example, cf. Fig. 3 second example, cf. Fig. 6

airlines 1 5 10| 100 1,000( 1 5 10| 100| 1,000
places 20 63 113} 1,013 10,013([19 63 113|1,013| 10,113
transitions 10 41 76| 706 7.006(|12] 52 97| 907 9,007
states (full) 14|3,483(9,806,583 —|[13]3,812(9,805,560| — —
states (symmetry) 14| 561| 378,096 —|13] 704| 329,996 — —
states (POR) 11| 86 261|18,061(1,752,867|/12| 88 228(8,361(734,049
states (POR+symm.)||11| 30 50| 410 4,010(/12| 28 43| 314| 3,014

transition sequences introduce a lot of intermediate states. This is known as state
space explosion. However, the actual order of independent actions is not relevant
to detect deadlocks, for instance. To this end, partial order reduction tries to
only construct one transition sequence (i. e., one order) of transitions of different
airline instances to ease the state space explosion.

When each of the reduction techniques is applied in isolation, the state spaces
grow more slowly, yet still exponentially in the number of airline instances.
The combination of both techniques, however, yields a linear increase of states
(cf. Table 5). Hence, we are able to verify properties of BPEL choreographies
with thousands of participating services. This shows that the presented approach
can be used to analyze real-life examples.

6 Conclusion

In this paper, we presented an analysis of choreographies expressed in BPEL4Chor
based on Petri nets. Models of choreographies with a lot of participating services
contain a lot of concurrency which results in state space explosion. Our exper-
iments showed that the combination of several reduction techniques allows to
handle choreographies with thousand participants.

Deadlocks in choreographies can be very subtle. In the introductory example,
each participant was correct (i.e., controllable) by itself, but the composition
introduced deadlocks. We showed how our tool chain helps to detect deadlocks
in a reasonable time and thus ensures that the choreography can be executed.

Since a choreography is a closed world, the analysis techniques allow a
participant to be generated out of other participants, which speeds up the
choreography design. If an airline and a travel agency agree on their behavior,
the customer has to comply with it and can neither force the airline nor the
travel agency to adapt their behavior to his wishes.

All things considered, the analysis and synthesis approach are independent
of BPEL as input language as the approaches are based on the formal model of



Analyzing BPEL4Chor: Verification and Participant Synthesis 13

Petri nets. Therefore, the presented tool-chain (cf. Fig. 1) can be easily adapted
to other service description languages.

6.1 Related Work

For analyzing BPEL4Chor choreographies, [16] presents a first approach for
mapping BPEL4Chor to m-calculus. However, there was no formal mapping
provided and it has not been shown whether the resulting m-formula can be
verified in a reasonable period of time.

Choreographies themselves can be expressed by specifying (i) interconnection
models and (ii) interaction models. An interconnection model captures the
observable behavior of each participant in a choreography; that is, it defines an
orchestration of the activities local to each participant. Activities of different
participants are related in a choreography via message links tying together
the local behavior into a global behavior. The basic messaging constructs are
sending and receiving activities. BPMN [6] and BPEL4Chor are languages to
express choreographies by interconnection models. An interaction model defines
an ordering of the interactions of the processes on a global view. The basic
messaging construct is the interaction activity, which models a message exchange
between two participants. Current languages providing interaction models are
Let’s Dance [17] and WS-CDL [18]. Verification techniques are available for
Let’s Dance (cf. [19]) and WS-CDL (e.g. [20,21]). Since Let’s Dance and WS-
CDL provide interaction models, whereas BPEL4Chor provides interconnection
models, the techniques cannot be directly applied to BPEL4Chor. [22] provides
a formalization and a verification of BPMN models. However, BPMN does
not originally support multiple instances of a participant as it is the case in
BPEL4Chor.

[23] presents how to synthesize a BPEL processes which properly interacts
with one given BPEL process. In contrast, we presented how to synthesize an
oWFN out of n given BPEL processes.

6.2 Future Work

We plan to enhance and generalize the translation approach of [14] to synthesize
a participant behavior description in BPEL instead of the oWFN only. For
example, information about the participant topology has to be incorporated into
the translation process to refine the resulting BPEL process.

Errors in choreographies can usually not be collated to a single participant,
but to the combination of several participants. To this end, the repair of a
erroneous choreography is nonlocal. We therefore plan to visualize the faulty
scenario in the BPEL code of the affected participant(s) to support the designer
in eliminating the detected problem.

In [9], the notion of distributed controllability was introduced. Distributed
controllability focuses on synthesizing a set of services that interact deadlock-
freely with a given service, and thus may allow to synthesize several independent
instances of a participating service. This would ease the design of choreographies,
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because as soon as the first participant and a participant topology is specified, the
blueprints of the remaining participants can be synthesized. We plan to further
investigate the first theoretical results whether they can be integrated into our
approach.
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