
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Towards BPEL in the Cloud: Exploiting Different Delivery
Models for the Execution of Business Processes

Tobias Anstett, Frank Leymann, Ralph Mietzner, and Steve Strauch

© 2009 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{AnstettLMS2009,
 author = {Anstett, T. and Leymann, F. and Mietzner, R. and Strauch, S.},
 title = {Towards BPEL in the Cloud: Exploiting Different Delivery Models
 for the Execution of Business Processes},
 booktitle = {Proceedings of the International Workshop on Cloud Services
 (IWCS’09) in conjunction with the 7th IEEE International
 Conference on Web Services (ICWS’09)},
 year = {2009},
 pages = {670--677},
 publisher = {IEEE Computer Society},
 doi = {10.1109/SERVICES-I.2009.32}
}

:

Institute of Architecture of Application Systems

Towards BPEL in the Cloud: Exploiting Different Delivery Models for the
Execution of Business Processes

Tobias Anstett, Frank Leymann, Ralph Mietzner, Steve Strauch
Institute of Architecture of Application Systems, University of Stuttgart, Germany

{anstett, leymann, mietzner, strauch}@iaas.uni-stuttgart.de

Abstract

More and more companies are outsourcing parts of their
business processes to third party providers to exploit the
expertise and economies of scale of these third party
providers. In the IT field, emerging delivery models for
software such as Software as a Service and cloud com-
puting offer the possibility to outsource applications and
computing infrastructure and thus enable enterprises to
focus on their core competences. In this paper we investi-
gate how the new delivery models affect the outsourcing
of business processes modeled in WS-BPEL. WS-BPEL
is the standard to model and execute business processes
in Web service-based IT landscapes. We describe how
security and trust issues affect the execution of BPEL
processes in the cloud and show the requirements on the
middleware supporting the execution of BPEL processes.

1. Introduction

Enterprises today are faced with the challenge to

rapidly react on ever changing market conditions. As

enterprises grow, shrink, merge and transform, they con-

stantly need to bring new products and services to market

to stay competitive. As most operational procedures in

an enterprise today are supported by IT systems, the IT

systems must be flexible and adaptable enough to cope

with these challenges. Often traditional monolithic ap-

plication silos are considered to be of major hindrance

for the flexibility of an enterprise. Big legacy applica-

tions hosted in an enterprises datacenter (on-premise)

are often not build with integration and flexibility in

mind. In the last years the service oriented architecture

(SOA) has emerged as an architectural style allowing to

build applications out of reusable components (services).

These services are explicitly designed to be reused by

other applications. Such applications are often called

composite applications. One technology stack to realize

an SOA is the Web service stack. Individual services

are realized as Web services and expose an external in-

terface described in WSDL1. The prominent standard

to recursively compose Web services into higher-level

Web services is the Web Service Business Process Exe-

cution Language (BPEL for short, [24]). BPEL allows

to describe the control flow that is needed to orchestrate
a set of services into a meaningful business process. Ad-

ditionally BPEL allows via so-called assign activities to

describe how data is passed between individual activities

in the business process.

A business process orchestration language such as

BPEL is widely regarded as beneficial for the flexibility

of an application [18] as it allows to change the orches-

tration logic (described in BPEL) independently from

the services. Additionally it fosters the modularization

of application functionality into services which allows

the reuse of these services in new applications.

In addition to reuse services from their own enter-

prises the encapsulation of functionality in services fos-

ters application developers to make traditional “make or

buy” decisions. As the invocation of external services

becomes more or less transparent through the use of Web

service technology enterprises can focus on a “best of

breed” strategy by choosing the best service out of a

variety of services in their own enterprise as well as at

third party providers.

In addition to the outsourcing of services fostered

by a SOA, new delivery models for software have been

emerging. Enterprises more and more try to move away

from traditional on-premise applications that are hosted

and run in their own datacenters. As with traditional

outsourcing scenarios in other fields such as manufactur-

ing, companies try to focus on their core competences.

As a consequence different outsourcing models have

emerged, from outsourcing the infrastructure, over out-

sourcing of middleware components to outsourcing of

whole applications.

1Web Service Description Language

2009 Congress on Services - I

978-0-7695-3708-5/09 $25.00 © 2009 IEEE

DOI 10.1109/SERVICES-I.2009.32

670

In this paper we investigate how the two aspects

(BPEL and new delivery models for software) combine.

We therefore begin with background and related work on

BPEL and outsourcing using BPEL. We then give a brief

overview over different delivery models for software

and hardware which can be used to run BPEL processes.

Motivated by a running example (Section 3) we inves-

tigate the challenges for BPEL in the cloud in Section

4. We show how the different delivery models influence

the design and execution of business process models as

well as supporting runtime infrastructure (such as BPEL

engines). We show how these challenges can be solved

with existing engines or where existing engines need to

be adapted or extended. We give a summary of the find-

ings and the necessary modifications to BPEL engines

in Section 5 and finish with a conclusion and outlook in

Section 6.

2. Background and Related Work

In the last years more and more approaches to fa-

cilitate the modeling of business process have been

introduced. From reference processes such as Roset-

taNet PIPs [14] or configurable EPCs [26], to config-

urable BPEL processes [16, 17] and configurable ap-

plications [22] and many more such as process frag-

ments [20]. These approaches focus on the modeling

aspect of business processes and support the modeler

by offering pre-configured processes templates. Thus,

the modeler does not need to reinvent the wheel and

can reuse process model templates to create new pro-

cesses. Other approaches deal with the splitting of BPEL

process models across various engines [15]. However,

supporting modelers in the creation of new processes out

of predefined templates is only one aspect in facilitating

business process modeling and execution. The second

part is the advent of new delivery models for software.

Several approaches and frameworks exist on how to offer

applications as a service [6, 8] or how to automatically

provision applications and related infrastructure [13, 19].

Salesforce.com2 as a prominent example of a software as

a service application allows users to customize business

processes in the application, while coghead3 allowed

users to create their own business processes based on a

BPEL engine. These approaches are geared toward the

support of business processes in the cloud as they allow

users to customize predefined applications or processes

and deploy them on a provider’s infrastructure. This

notion is supported by other delivery models that have

been introduced in the area of cloud computing in the

last years. We identified the following three categories

2http://www.salesforce.com
3http://www.coghead.com/

of delivery models namely infrastructure as a service

(IaaS), platform as a service (PaaS) and software as a

service (SaaS), but there are also other classifications

available [4].

Infrastructure as a service provides the basic infras-

tructure to the customer. The customer requests and

rents required hardware from the IaaS provider and has

to take care for configuring the platform and applica-

tion, i.e. installation of operation system and required

software components, security configuration, etc. Ama-

zon Web Services4 especially Amazon Elastic Compute

Cloud (Amazon EC2) as a prominent example of an in-

frastructure as a service application allow customers to

hire required hardware components. The user employs

already existing Amazon Machine Images (AMIs) or

creates custom AMIs before deploying his Amazon EC2

instance.

The PaaS model offers both, the infrastructure as

well as the platform to deploy applications. The user

does not have to take care neither for reserving hardware

resources nor for configuring the platform. Google’s

App Engine5 is a well-established example of a platform

as a service application.

Software as a service is a delivery model, which pro-

vides different customers the functionality of an applica-

tion that is completely hosted in the cloud. The user does

not have to worry about the required hardware resources,

software components, deployment of the application,

etc. SaaS allows different users the customization of the

application, i.e. regarding the presentation, logical and

database layer. This is done through customer profiles.

One of the characteristics commonly required by SaaS

applications is multi-tenancy. Multi-tenancy means that

multiple customers (tenants) are served concurrently by

one or more hosted application instance. Generally there

are two multi-tenancy patterns: multiple instance and

native multi-tenancy [8]. Multiple instance mean that for

each tenant a separate instance is deployed. Native multi-

tenancy means that all tenants are served by one native

single possibly clustered instance of the application.

When talking about and comparing delivery mod-

els of cloud computing the customer’s point of view,

e.g. user interfaces, customizability, etc. as well as the

provider’s point of view, e.g. provision of hardware

resources, virtualization, etc. should be taken into con-

sideration [4,5]. Figure 1 shows an overview of the three

delivery models described before.

The flexibility for the customer increases from SaaS

(lowest) to IaaS (highest), because the raised effort for

setting up the platform as well as the applications by him-

self also induces the possibility of exerting influence on

4http://aws.amazon.com
5http://appengine.google.com

671

SaaS (Salesforce)

PaaS (Google's App Engine)
Flexibility for
Customer

Complexity for
Provider

IaaS (Amazon EC2)

Figure 1. Overview of delivery models

selection of the middleware and application components.

By contrast the complexity for the provider decreases

from SaaS (highest) to IaaS (lowest). The comparison of

the different delivery models will be discussed in more

detail in Section 4.

Right now there is no approach enabling execution

of business processes through cloud computing, because

the delivery models are not geared specifically at offering

BPM in the cloud and that is where our approach kicks

in.

3. Running Example

We introduce the example of a fictional travel agency

named Paradise Travel, which offers travel booking

through a Web interface to potential customers. The

offering of Paradise Travel comprises complete travel

booking including transport to holiday resort, hotel book-

ing as well as optional car rental service. The whole

travel booking process is modeled as business process in

BPEL. External partners involved in the business process,

e.g. several car rental agencies located at the different

available travel destinations as well as the credit inves-

tigation company for checking solvency of customer

before credit card payment, are contacted through Web

services.

Currently the infrastructure and the platform required

for Paradise Travel, e.g. an application server including

deployed Web services as well as the business process

engine including deployed travel booking process, are

hosted in an enterprise datacenter owned and maintained

by the Paradise Travel company (on-premise).

4. BPEL in the cloud

In this section we will take a look on how to outsource

several parts of Paradise Travel’s business by applying

the delivery models IaaS, PaaS and SaaS. Along the

way we will consistently refer to the example described

before.

4.1. IaaS

Although outsourcing the hosting and maintenance

of the infrastructure required for the business of Paradise

Travel to an IaaS provider reduces the costs for the travel

booking company, the setup of the application server

and business process engine as well as thedeployment of

Web services and travel booking business process is still

the task of Paradise Travel. So applying IaaS is the first

step to concentrate on the core business.

4.1.1. Providing BPEL through IaaS. In terms of the

requirements for a BPEL engine, IaaS (Figure 2) is very

close to the traditional on-premise model. Customers

have to make the same decisions regarding the instal-

lation of software such as operating system, platform
middleware and application. Of course, this decisions

must comprise security considerations such as blocking

out attackers by locking ports, patching the operating

system, running an anti-virus software, etc., as well as

configuration and enforcement of access control policies.

Customer
Applications BPEL Processes Process Models

Process
Instances

Middleware BPEL Engine DBMS

Provider

OS

Provider
Hardware

Figure 2. IaaS

In essence, IaaS realizes on-premise in the cloud by

moving the responsibilities for hosting the infrastruc-

ture (e.g. hardware) from their own datacenters to an

outsourcing provider. Thus, there are no special require-

ments or challenges that must be solved to be able to

provide BPEL through IaaS, except the installation of a

BPEL engine.

4.2. PaaS

Applying PaaS for outsourcing most of the tasks not

part of the core business of Paradise Travel, e.g. hosting

and maintenance of infrastructure as well as platform

middleware, reduces the complexity for Paradise Travel

compared to IaaS. On the one hand it is still the task of

the travel booking company to provide the Web services

to be deployed on the application server as well as the

travel booking process to be deployed on the process

engine. On the other hand this is not only a disadvantage

but also the possibility to keep a part of the flexibility of

the travel booking company by enabling the adaption of

the business process, in case the needs of the customers

672

concerning travel booking changed or in case the agency

providing hotel information and hotel reservation is no

longer available and another provider has to be found.

4.2.1. Providing BPEL through PaaS. In contradic-

tion to the IaaS deployment model, PaaS providers host

hardware, operating system and platform middleware
(Figure 3) such as a BPEL engine and a database man-

agement system (DBMS).

Customer
Applications BPEL Processes Process Models

Process
Instances

Provider
Middleware BPEL Engine DBMS

OS

Hardware

Figure 3. PaaS

Because everything except the business process

model is hosted, the customer must trust his provider

on the basis of external audits or security certificates,

having expertise in protecting the system at hardware

and operating system level.

Although a customer may trust the provider at the

hardware or operating system level, one of the main

show-stopper is the perceived lack of data confidentiality

by means of data loss or even sellout of customer data.

For example the on-demand cloud computing service

FlexiScale6 has been offline for several days because an

employee accidentally deleted one of the main storage

volumes [23].

Two main distinctions between the forms of data

hosted at an outsourcing provider must be made: The

first form is data, which describes the business process it-

self such as process models. The second form is the data

that is processed by the business processes, such as cus-

tomer information and order processing data. Because

administrators can simply gain access to the business

process models or the business process instance data in

the underlying databases, it becomes easier to “steal” the

assets of the enterprise.

To increase customers’ confidence and trust in out-

sourcing and the provider itself, unauthorized disclosure

must be impossible by design. Therefore we propose an

architecture of a secure BPEL engine which ensures that

the information about an asset of the enterprise such as

process models and customer data is not inexpediently

used. In the following section the security requirements

to prevent unauthorized disclosure of data are analyzed

and a possible realization in terms of requirements to a

6http://www.flexiscale.com/

secure BPEL engine architecture is presented.

4.2.2. Requirements and Challenges. Business pro-

cess management (BPM) is a evolutionary process that

involves modeling, implementation, execution, moni-

toring, assessment and re-design of business processes.

When outsourcing processes to a PaaS provider, the

provider is responsible for the execution and partially

monitoring of these processes. Before a business process

can be executed, the process model has to be deployed to

the provider’s engine. The deployment process includes

uploading of the process model and its final installation

to the process engine. To ensure confidentiality and

integrity of the enterprise assets that are implicitly re-

flected by the process model and process instance it is

necessary to realize the following security requirements:

• It must not be possible to read the process model

for somebody who gets hold of a process model

description file such as a BPEL file.

• It must not be possible to alter the process model

(and if yes, find out that it has been done)

• It must not be possible to deploy the process model

on another (maybe corrupted) engine

Therefore a means to encrypt and sign parts of pro-

cesses or complete processes is needed. These kinds of

processes are further referred as obfuscated processes.

Execution of an obfuscated process requires a modified

process engine that implements additional features such

as a public key infrastructure (PKI). Thus, each engine

has a unique private key and only accepts obfuscated

processes that are encrypted or signed using one of the

provided public keys. Others are rejected. The private

key of the engine is unknown even to the administrator.

Employing a PKI, the engine must provide the neces-

sary interface to retrieve the public key that can then be

used to encrypt the process, or publish it to a certifica-

tion authority such as VeriSign7, which can furthermore

certify that the provider uses a secure BPEL engine. Al-

though the PKI implicitly protects processes of being

deployed to an unintended engine, it does not yet detect

possible tampering with the engine through the provider.

It must not be possible to corrupt the process or engine

to log information in an undesired way. Therefore the

compliant engine must be self-signed with its private key

to detect modifications to its source.

Since BPEL is based on XML we propose to use

the two W3C Recommendations XML-Encryption [30]

and XML-Signature [31] to ensure secrecy, integrity

and authenticity in BPEL processes. To apply these

7http://www.verisign.com/

673

requirements to a BPEL engine such as Apache ODE8,

the existing deployment component has to be changed.

The deployment component must be able to decrypt

obfuscated process models in order to validate them

before saving them to database.

A general problem arising from the architecture of a

BPEL engine is the underlying DBMS. BPEL engines

use relational DBMS to store process model and process

instance information and thus administrators can use the

DBMS as back-door to access these assets. Therefore

the following security requirements must be taken into

account:

• It must not be possible to derive or reconstruct the

process definition of a process by gaining access to

the DBMS.

• It must not be possible to access process instance

data such as credit card information of customers

by gaining access to the DBMS.

Workflow engines distinguish between buildtime, run-

time and audit databases [18]. The buildtime database

defines the metamodel in other words the structure of

process models. Runtime databases are used to create

concrete instances of the process models stored in the

buildtime database, for navigation and controlling the

execution of the process instance and its accumulating

data. Due to laws, regulations or just to enable monitor-

ing, audit databases also referred as audit trails or event

log databases, record the actual execution of process

instances as set of traces.

The buildtime database contains process models in an

easily reconstructable representation and thus provides a

huge security hole for a possible theft. Assumed that the

information contained in the buildtime database is pro-

tected, process models can be stolen either way. Process

mining techniques [3, 28, 29] can be used to reconstruct

the process model out of the process instance data and

the execution traces contained in the runtime database

or the audit database. This approach requires some basic

understanding of process mining and maybe involves the

transformation of data contained in the databases to an-

other representation which is required for the algorithms.

The problem of protecting process instance data such as

customer information contained in the runtime database

is related to the problem of protecting the process model

in the buildtime database.

As before we propose a solution based on encryption

reusing the unique private key of the engine. The general

problem using encryption in databases is the possible

restriction of expressiveness of client queries (e.g. re-

lational operators such as JOINS), because encrypted

8http://ode.apache.org/

values aren’t allowed to be decrypted at the DBMS side.

The selection of adequate encryption mechanisms which

match the required query expressiveness in conjunction

with the given database schema is crucial in terms of

performance (and security). Customers must investigate

which parts of their business processes are worth protect-

ing and rather secure the relevant parts than the whole

process.

At this point we would like to refer to existing re-

search on database security [2, 21] or database as a ser-

vice (DaaS) [1, 9, 10]. These research areas for example

investigate how SQL queries over encrypted data can

be realized using techniques such as deterministic en-

cryption to support join queries or partitioning (buck-

etizing) [10, 11] techniques to support range queries.

Employing dummy-noise such as falsification of times-

tamps, or unsharp queries to increase security, moves

the scope of responsibility of traditional DBMS func-

tionality into the client application e.g. the navigator

component of a BPEL engine. Internal representation of

encrypted nodes (attributes, elements, in particular activi-

ties) must be “new” objects in the internal representation

of the BPEL process and must be treated differently by

the navigator.

By identifying the requirements and challenges to

securely execute BPEL in the PaaS delivery model, a

fair amount of possible attacks to the enterprise assets

can be reduced. However PaaS has more security is-

sues compared to IaaS. Because read operations to the

main memory are much faster than read operation to data

located at the hard disk, applications including BPEL en-

gines keep current execution data or frequently accessed

data in main memory which is frail to mining algorithms.

Therefore trust in business process outsourcing can only

be established, if provider’s platforms are certified to

use secure coprocessors [27] in combination with the

identified secure BPEL engine.

4.3. SaaS

Using SaaS for outsourcing of all tasks not part of

the core business of Paradise Travel leads to the biggest

reduction of complexity for Paradise Travel. Another ef-

fect is the nearly complete loss of flexibility concerning

the business process. The SaaS provider provides Par-

adise Travel only a few customization options regarding

the user interface, data management, etc. This leads to a

loss of flexibility, as Paradise Travel cannot change the

application in case of changing customer demand.

4.3.1. Providing BPEL through SaaS. In contradic-

tion to IaaS and PaaS, the customer of a SaaS provider

does not have to worry about hardware, operating sys-

674

tem, platform middleware, and even the application itself

(Figure 4). At this point a paradigm shift can be observed.

The process no longer represents an asset of the tenant’s

enterprise and is even not visible at all to the tenant.

Customer

Provider
Applications BPEL Processes Process Models

Process
Instances

Middleware BPEL Engine DBMS

OS

Hardware

Figure 4. SaaS

By serving an application to multiple customers it

has to be distinguished between single-tenant and multi-

tenant architectures. When providing BPEL through

SaaS, a single-tenant architecture implies the installation

of one BPEL engine (and DBMS) not only for each

tenant but also for each process model. By relying on a

multi-tenant architecture, it is possible to serve multiple

tenants with a single BPEL engine (and DBMS) hosting

multiple business processes. In both scenarios a tenant

request triggers the creation and execution of an instance

of the requested business process. Thus the accumulating

data of the respective tenants must be protected against

unintended access by the SaaS provider as well as other

tenants if using a multi-tenant architecture.

While the first security requirement can be easily

solved by reusing the proposed modifications to BPEL

engines as described in Section 4.2.2, the protection

of information against other tenants sharing the same

resources needs to be further analyzed.

4.3.2. Requirements and Challenges. Multi-tenant ar-

chitectures [7] distinguish between three approaches to

realize multi-tenancy at data level. These approaches

can be further distinguished by means of the degree of

data isolation reaching from separate databases to sep-

arate or shared schema in a common database. While

data isolation is very important it can be observed that

it correlates with the required system resources [12] in

terms of memory-footprint, used disk space, CPU usage

and socket allocation. Utilizing the separate databases

approach the data of each tenant is physical isolated.

The separate schemas approach ensures logical isolation

of each tenant’s data. Both approaches are applicable

for using existing database access control mechanisms.

Therefore the BPEL engine must be extended to estab-

lish a tenant context when a process instance is being

created. A tenant context is defined analogous to an au-

thentication context [25], encapsulating the identity of a

tenant as well as a reference to the schema location. The

engine must be able to map the tenant’s context to the

appropriate authenticators for database access. The navi-

gator component of the BPEL engine has to be modified

to use this context for any database operation.

However, this solution is not directly applicable if the

tenants share the same schema. As the same tables are

used for the data of multiple tenants, there is neither a

logical nor physical separation. Assumed that a BPEL

process includes a weak correlation mechanism it is

possible that requests to process instances sharing the

same correlation values get mixed up and responses

containing confidential data are exposed to unintended

tenants. A straight forward solution would be to add a

column containing a tenant identifier [7] to each table. In

the ideal case a DBMS is able to define access control at

the level of rows by means of tenant identifiers. Because

this kind of functionality would restrict the set of suitable

DBMS too much, the concept of a tenant context as

discussed above is needed. Furthermore the navigator

component has to be extended to restrict the possible

query results to the current tenant.

Another solution to the problem of serving multiple

customers is to deviate from the multi-tenancy approach

and dynamically redeploy a business process for every

tenant. Thus a process instance and its corresponding

process model are bound to one single tenant, still shar-

ing the same resources at the DBMS level. Then there

is no longer a risk to expose data to other tenants by

mistake, because now each process has its own endpoint

which serves as a unique identifier to distinguish the

process instance information.

5. Analysis and First Evaluations with Ex-
isting Engines

Given the detailed analysis above of the different re-

quirements for BPEL engines regarding the different

delivery models we give an overview of the findings

and a deeper analysis of what is required from future en-

gines to support all kinds of delivery model. Today, open

source and commercial BPEL engines such as Apache

ODE, Active BPEL9, IBM WebSphere Process Server

or Oracle’s BPEL engine and others are not explicitly

developed with multi-tenancy in mind. They are more

geared towards the on-premise market. We have made

first experiments in combining the Apache ODE and Ac-

tiveBPEL engines and IaaS. Therefore we installed those

engines on Amazon EC210. We bundled respective Ama-

zon EC2 images that allow us to quickly start up servers

9http://www.activebpel.org
10http://aws.amazon.com/ec2/

675

including the installed BPEL engines for testing and e-

learning purposes. However, this approach requires that

the user is familiar with the underlying IaaS platform

(in this case Amazon EC2). Moreover in case several

tenants require BPEL engines simultaneously, multiple

servers must be started which means that the overhead

of multiple operating systems and other middleware is

still present.

Another approach to handle multiple tenants is to

install multiple BPEL engines on one server. The ad-

vantage of this approach is that the operating system is

only needed once. The disadvantage is that still multiple

application servers are needed. Additionally the fact that

multiple tenants can access a server requires that the en-

gines are specifically secured so that one tenant cannot

access the engine of another tenant. The IBM Web-

Sphere Process Server includes the concept of so-called

profiles that can be used to run multiple process servers

on one machine. Access control can be configured on

the level of profiles allowing to assign a particular pro-

file to a particular tenant. However, running multiple

engines on one server still has the disadvantage that a

lot of overhead is caused by only running the engine

and underlying application servers. The Apache ODE

engine will allow to run multiple instances of the engine

on one application server in future releases to minimize

this burden.

The commercial BPEL engines such as IBM’s Pro-

cess Server allow access control on a per-model level.

For example different administrators (that can stop, re-

sume and modify process models) can be assigned to

different process models. In general this makes these

engines ready for a PaaS scenario. However, they lack

sophisticated features such as the storage of different

process models in different database tables to ensure

isolation of data. However, in case this is not required

and shared databases are of no concern such engines can

be used in a PaaS scenario.

In SaaS scenarios access control and isolation on a

process instance level is needed. This is not supported by

current engines. For example it is not possible to assign

different administrators to different instances depending

under which tenant context they have been started. We

are currently extending the Apache ODE engine with

an access control concept that allows to define access

control for different tenants on a per-instance level. Fur-

thermore we incorporate techniques from the database

field such as encryption to ensure that tenant-specific

data can only be read by the correct tenant.

In conclusion, the requirements for a BPEL engine

regarding multi-tenancy support rise with complexity

of the delivery model. While in the on-premise and

IaaS model the mechanisms of the underlying operating

system can be used, the PaaS and SaaS model require

multi-tenancy on the process model and even process

instance level.

6. Conclusion and Future Work

In this paper we investigated the execution of BPEL

processes in different delivery models, from IaaS to SaaS.

We described the characteristics of the different models

and showed their requirements on the underlying mid-

dleware. We showed how in particular security and trust

issues affect the execution of BPEL processes in differ-

ent delivery models. Whereas BPEL processes in the

IaaS model can be fairly easily executed given today’s

BPEL engines we showed that other delivery models (in

particular PaaS and SaaS) require isolation on the pro-

cess model and process instance level. Additionally we

used several available BPEL engines to provide BPEL

in an IaaS model and investigated whether the advanced

authentication mechanisms of commercial-grade BPEL

engines today are sufficient to provide BPEL engines

as platform as a service. As all required features are

not available in today’s BPEL engines, we described the

modifications that are needed to be able to execute BPEL

processes in the cloud in the future. We started to modify

an open-source BPEL engine (Apache ODE) to include

these features. In future work we will also investigate

how delivering BPEL in the different delivery models

affects the performance of BPEL execution as well as

the treatment of data in a BPEL process. Other future

work includes aspects such as the user interfaces for both

managing the processes as well as for the participation

of humans in processes.

Acknowledgments

The work published in this article has partially re-

ceived funding from the European Community’s 7th

Framework Programme Information Society Technolo-

gies Objective under the MASTER project11 contract

no. FP7-216917 and the COMPAS project12 contract no.

FP7-215175.

References

[1] Providing database as a service. In ICDE ’02: Proceed-
ings of the 18th International Conference on Data En-
gineering, page 29, Washington, DC, USA, 2002. IEEE

Computer Society.

11http://www.master-fp7.eu
12http://www.compas-ict.eu

676

[2] Database security-concepts, approaches, and challenges.

IEEE Trans. Dependable Secur. Comput., 2(1):2–19,

2005. Fellow-Bertino,, Elisa and Fellow-Sandhu,, Ravi.

[3] R. Agrawal, D. Gunopulos, and F. Leymann. Mining

process models from workflow logs. In In Sixth Interna-
tional Conference on Extending Database Technology,

pages 469–483, 1998.

[4] F. Aymerich, G. Fenu, and S. Surcis. An approach to a

cloud computing network. In: Proceedings of the First
International Conference on the Applications of Digital
Information and Web Technologies (ICADIWT 2008),
pages 113–118, Aug. 2008.

[5] R. Buyya, C. S. Yeo, and S. Venugopal. Market-oriented

cloud computing: Vision, hype, and reality for delivering

it services as computing utilities. Proceedings of HPCC
’08., 2008.

[6] F. Chong and G. Carraro. Building Dis-
tributed Applications Architecture Strategies
for Catching the Long Tail. MSDN archi-

tecture center, http://msdn2.microsoft.com/en-

us/library/aa479069.aspx, 2006.

[7] F. Chong, G. Carraro, and R. Wolter. Multi-
Tenant Data Architecture. MSDN archi-

tecture center, http://msdn.microsoft.com/en-

us/library/aa479086.aspx, 2006.

[8] C. Guo, W. Sun, Y. Huang, Z. Wang, B. Gao, and B. IBM.

A framework for native multi-tenancy application devel-

opment and management. In In Proceedings of CEC/EEE
2007, 2007.

[9] H. Hacigms, S. Mehrotra, and B. Iyer. Providing database

as a service. Data Engineering, International Conference
on, 0:0029, 2002.

[10] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing

sql over encrypted data in the database-service-provider

model. In SIGMOD ’02: Proceedings of the 2002 ACM
SIGMOD international conference on Management of
data, pages 216–227, New York, NY, USA, 2002. ACM.

[11] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-

preserving index for range queries. In VLDB ’04: Pro-
ceedings of the Thirtieth international conference on Very
large data bases, pages 720–731. VLDB Endowment,

2004.

[12] D. Jacobs and S. Aulbach. Ruminations on multi-tenant

databases. In BTW, pages 514–521, 2007.

[13] A. Keller and R. Badonnel. Automating the Provisioning

of Application Services with the BPEL4WS Workflow

Language. In In Proceedings of DSOM 2004. Springer,

2004.

[14] R. Khalaf. From RosettaNet PIPs to BPEL processes:

A three level approach for business protocols. Data &
Knowledge Engineering, 61(1):23–38, 2007.

[15] R. Khalaf and F. Leymann. A Role-based Decomposition

of Business Processes using BPEL. In Proceedings of
ICWS’06., 2006.

[16] M. Koning, C. Sun, M. Sinnema, and P. Avgeriou.

VxBPEL: Supporting variability for Web services in

BPEL. Information and Software Technology, 51(2):258–

269, 2009.

[17] A. Lazovik and H. Ludwig. Managing Process Customiz-

ability and Customization: Model, Language and Process.

In In Proceedings of WISE 2007. Springer, 2007.

[18] F. Leymann and D. Roller. Production Workflow – Con-
cepts and Techniques. Prentice Hall PTR, 2000.

[19] H. Ludwig. Web services QoS: external SLAs and inter-

nal policies or: how do we deliver what we promise? In

WISE Workshops, 2003., 2003.

[20] Z. Ma and F. Leymann. A Lifecycle Model for Using

Process Fragment in Business Process Modeling. In

Proceedings of BPDMS 2008 Workshop at CAiSE’08,

Montpellier, June 2008. Online.

[21] U. Maurer. The role of cryptography in database security.

In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages

5–10, New York, NY, USA, 2004. ACM.

[22] R. Mietzner and F. Leymann. Generation of BPEL Cus-

tomization Processes for SaaS Applications from Vari-

ability Descriptors. In Proceedings of SCC’08, 2008.

[23] R. Miller. Serious Cloud Storage Stumble
for FlexiScale. datacenterknowledge.com,

http://www.datacenterknowledge.com/archives/2008/08

/28/serious-cloud-storage-stumble-for-flexiscale/, 2008.

[24] OASIS. Web Services Business Process Execution Lan-
guage Version 2.0 – OASIS Standard, 2007.

[25] M. Papazoglou. Web Services: Principles and Technol-
ogy. Prentice Hall, 2007.

[26] J. Recker, M. Rosemann, W. van der Aalst, and

J. Mendling. On the Syntax of Reference Model

Configuration–Transforming the C-EPC into Lawful EPC

Models. Business Process Reference Models, page 60.

[27] S. W. Smith and D. Safford. Practical server privacy with

secure coprocessors. IBM Syst. J., 40(3):683–695, 2001.

[28] W. van der Aalst, T. Weijters, and L. Maruster. Workflow

mining: Discovering process models from event logs.

IEEE Transactions on Knowledge and Data Engineering,

16(9):1128–1142, 2004.

[29] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst,

L. Maruster, G. Schimm, and A. J. M. M. Weijters. Work-

flow mining: A survey of issues and approaches. Data
Knowl. Eng., 47(2):237–267, 2003.

[30] W3C. XML Encryption Syntax and Processing – W3C
Recommendation, 2002.

[31] W3C. XML Signature Syntax and Processing (Second
Edition) – W3C Recommendation, 2008.

677

	cover-IEEE
	Foliennummer 1

	INPROC-2009-41 - Towards-BPEL-in-the-Cloud

