
Institute of Architecture of Application Systems

BPELscript: A Simplified Script Syntax for
WS-BPEL 2.0

Marc Bischof, Oliver Kopp, Tammo van Lessen, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

http://www.iaas.uni-stuttgart.de

in: 35th Euromicro Conference on Software Engineering and Advanced Applications (SEAA 2009).
See also BibTEX entry below.

BibTEX:

@inproceedings {BPELscript,

author = {Marc Bischof and Oliver Kopp and Tammo van Lessen and Frank Leymann},

title = {{BPELscript: A Simplified Script Syntax for WS-BPEL 2.0}},

booktitle = {35th Euromicro Conference on Software Engineering and Advanced Applications (SEAA 2009)},

publisher = {IEEE},

year = {2009},

keywords = {service orchestration; service scripting; BPEL; BPM lifecycle},

}

© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

BPELscript: A Simplified Script Syntax for WS-BPEL 2.0

Marc Bischof, Oliver Kopp, Tammo van Lessen, Frank Leymann

Institute of Architecture of Application Systems
Universität Stuttgart
Stuttgart, Germany

mc.bischof@googlemail.com, {lastname}@iaas.uni-stuttgart.de

Abstract—Business processes are usually modeled using
graphical notations such as BPMN. As a first step towards
execution as workflow, a business process is transformed to
an abstract WS-BPEL process. Technical details required for
execution are added by an IT expert. While IT experts expect
Java-like syntax for programs, WS-BPEL requires processes
to be expressed in XML. This paper introduces BPELscript
as a new syntax for WS-BPEL aiming to reduce the barrier
for IT experts to use WS-BPEL by providing a JavaScript-
inspired syntax.

Keywords-service orchestration; service scripting; BPEL;
BPM lifecycle

I. INTRODUCTION

The business process management (BPM) lifecycle
consists of the phases analysis & design, configuration,
enactment and evaluation [1]. One architectural style to
support BPM is the Service-oriented Architecture (SOA)
and the Web service stack is the most prominent implemen-
tation of the SOA [2]. For definition of workflows, the Web
service stack provides WS-BPEL (BPEL for short, [3]).
The main features of BPEL are its native support for
concurrency, backward and forward recovery. In the BPM
lifecycle, BPEL is used for workflow enactment. Before a
workflow can be enacted, it has to be implemented based
on a process model during the configuration phase. To ease
the implementation of a business process as a workflow,
the process model is transformed to an abstract BPEL
process model. After the mapping, an IT expert refines
the abstract BPEL process model to an executable BPEL
process model containing all technical details required for
execution.

While BPEL is the de-facto language for workflow
enactment in the area of Web services [2], there are several
languages proposed for modeling business processes. The
most prominent language is the business process modeling
notation BPMN [4]. For that language, a mapping to BPEL
is available [5]. A BPEL process is serialized using XML.
Thus, an IT expert either has to use a BPEL designer
or has to edit pure XML code for refining the resulting
BPEL model to an executable BPEL model. Some of the
available BPEL modeling tools however do not support all
features of BPEL [6]. For example, the BPEL designer of
NetBeans1 does not support defining explicit control links
to connect activities.

1http://www.netbeans.org/features/soa/

Figure 1. Position of BPELscript in the BPM lifecycle

In this paper, we present BPELscript as an alternative
to modify BPEL process models. BPELscript offers the
same constructs as BPEL, but comes with a syntax inspired
by scripting languages such as JavaScript or Ruby. The
semantics of BPELscript is given by its mapping to BPEL.
Each construct of BPELscript can be mapped to BPEL.
Since BPELscript itself covers all features of BPEL, each
construct of BPEL can also be mapped to BPELscript.
Thus, a mapping in both directions is provided. The
targeted embedding in the BPM lifecycle is presented
in Figure 1: the business process model is modeled in
BPMN and exported to BPEL. The BPEL process model
is then used as interchange format for the configuration
phase. Here, the BPEL process model is converted to
BPELscript. Now, the IT expert can use his favorite
IDE to edit the BPELscript file and enriches the process
definition by technical details such as defining variables
with XML schema data types, binding interactions to
concrete WSDL operations and refining the process logic,
e.g. by adding more sophisticated data manipulation tasks.
After he has finished this refinement—also known as
“Executable Completion”—the BPELscript is converted
back to a BPEL process model. This BPEL process
model is then deployed to a workflow engine. Having
a mapping from BPEL to BPELscript and vice versa at
hand, BPELscript does not force companies to implement
new translations from BPMN to other workflow languages,
switch to new workflow engines or change their process
monitoring solutions. BPELscript is seamlessly integrated
into the established BPM lifecycle.

A sample process is shown using BPMN, BPEL and
BPELscript in Section II. There have been other approaches
to define a new syntax for BPEL. A summary of these
approaches is given in Section III. BPEL offers the

http://www.netbeans.org/features/soa/

Figure 2. Loan approval process modeled in BPMN

capabilities to define a graph defining a workflow. We
provide more details about the graph-based capabilities of
BPEL and their representation in BPELscript in Section IV.
The representation of other language specifics such as
the basic activities and optional attributes are presented
in Section V. Subsequently, we provide an overview on
the transformations between BPELscript and BPEL in
Section VI. Finally, Section VII concludes and provides
an outlook on future work.

II. LOAN APPROVAL IN BPELSCRIPT

The loan approval process is a simple business process
used in the BPEL specification to give an overview on the
capabilities of the language. Figure 2 presents the process
modeled using BPMN. First a credit request message is
received. In the case of a high amount, the loan request is
directly sent to a human approver. If the amount is low, the
risk of the loan is assessed. In the case of a low risk, the
loan is directly approved. If not, a human approver has to
check the loan request. The decision of the human approver
is directly sent as reply to the customer. In the case of a
fault during the processing, the customer is notified about
the fault.

The process expressed in BPEL serialized in XML is 90
lines long (cf. [3]). An excerpt is shown in Figure 3. The at-
tribute suppressJoinFailure="yes" enables dead-
path elimination required for graph-oriented programming.
Details are described in Section IV. The flow activity
provides support for concurrency and synchronization. Each
activity may have incoming and outgoing links. In the
process, the receive activity is used to receive the
loan request. The attribute operation denotes which
WSDL operation is used to receive the request. variable
denotes the variable, where the received message should be
stored. Finally, createInstance="yes" denotes that
a new process instance has to be created upon receipt of
the message. The receive activity itself has two outgoing
links listed in the sources element. One for the case that
a loan with an amount less than 10,000AC and the other
one for an amount equal or greater than 10,000AC. These
conditions are stored in the transitionCondition
element. If the amount is less than 10,000AC, the status of
the link receive-to-asses is set to true. Since the
invoke only has one incoming link and no explicit join
condition, the invoke activity is executed. It calls the
operation check at the risk checking service. The message
to be sent is specified via the inputVariable attribute.

1 <process suppressJoinFailure="yes">
2 <faultHandlers>
3 <catch faultName="lns:loanProcessFault" >
4 <reply operation="request" variable="error"
5 faultName="unableToHandleRequest" />
6 </catch>
7 </faultHandlers>
8 <flow>
9 <links>

10 <link name="receive-to-assess"/>
11 <link name="receive-to-approval" />
12 ...
13 </links>
14 <receive operation="request" variable="request"
15 createInstance="yes">
16 <sources>
17 <source linkName="receive-to-assess">
18 <transitionCondition>
19 $request.amount < 10000
20 </transitionCondition>
21 </source>
22 <source linkName="receive-to-approval">
23 <transitionCondition>
24 $request.amount >= 10000
25 </transitionCondition>
26 </source>
27 </sources>
28 </receive>
29 <invoke operation="check"
30 inputVariable="request"
31 outputVariable="risk">
32 <targets>
33 <target linkName="receive-to-assess"/>
34 </targets>
35 <sources>
36 <source linkName="assess-to-setMessage">
37 <transitionCondition>
38 $risk.level=’low’
39 </transitionCondition>
40 </source>
41 <source linkName="assess-to-approval">
42 <transitionCondition>
43 $risk.level!=’low’
44 </transitionCondition>
45 </source>
46 </sources>
47 </invoke>
48 ...
49 </flow>
50 </process>

Figure 3. Simplified version of the loan approval process as BPEL
workflow

The received message is stored in the outputVarible.
The two outgoing links of the invoke activity are
again listed in the sources element. Figure 4 presents
the full process in BPELscript syntax. Lines 1 to 5
provide necessary namespace declarations and WSDL
imports. @suppressJoinFailure enables dead-path
elimination, described in Section IV. parallel is the
BPELscript pendant of the flow activity. Incoming links
are denoted by the join statement. Outgoing links are
denoted by signal statements. Details are also described
in Section IV. The remaining elements of BPEL processes
are shown in Section V.

III. RELATED WORK

The only existing language close to BPELscript with a
compatibility close to BPEL is SimPEL [7]. However, the

1 namespace pns = "http://example.com/loan-approval/";
2 namespace lns =
3 "http://example.com/loan-approval/wsdl/";
4 @type http://schemas.xmlsoap.org/wsdl/
5 import lServicePT = lns::loanServicePT.wsdl;
6 @suppressJoinFailure
7 process pns::loanApprovalProcess {
8 partnerLink
9 customer = (lns::loanPartnerLT, loanService, null),

10 approver = (lns::loanApprovalLT, null, approver),
11 assessor = (lns::riskAssessmentLT, null, assessor);
12 try {
13 parallel {
14 @portType lns::loanServicePT @createInstance
15 request = receive(customer, request);
16 signal(receive-to-assess,
17 [$request.amount < 10000]);
18 signal(receive-to-approval,
19 [$request.amount >= 10000]);
20 } and {
21 join(receive-to-assess);
22 @portType lns::riskAssessmentPT
23 risk = invoke(assessor, check, request);
24 signal(assess-to-setMessage,
25 [$risk.level = ’low’]);
26 signal(assess-to-approval,
27 [$risk.level != ’low’]);
28 } and {
29 join(assess-to-setMessage);
30 approval.accept = "yes";
31 signal(setMessage-to-reply);
32 } and {
33 join(receive-to-approval, assess-to-approval);
34 @portType lns::loanApprovalPT
35 approval = invoke(approver, approve, request);
36 signal(approval-to-reply);
37 } and {
38 join(approval-to-reply, setMessage-to-reply);
39 @portType lns::loanServicePT
40 reply(customer, request, approval);
41 }
42 } @faultMessageType lns::errorMessage
43 catch(lns::loanProcessFault) { |error|
44 @portType lns::loanServicePT
45 @fault unableToHandleRequest
46 reply(customer, request, error);
47 }
48 }

Figure 4. Loan approval in BPELscript

Apache ODE team “preferred language consistency over
BPEL compatibility” [7], SimPEL can only be used in
Apache ODE and is not fully compatible with BPEL. In
contrast to SimPEL, BPELscript a) is fully transformable
to BPEL and thus is deployable to any BPEL-compatible
workflow engine and b) fully supports abstract processes.

The Simple Service Composition Language (SSCL [8])
is a “simple programming language for Web Service
composition”, which provides a subset of the Coopetition
Language (CL [9]) in a syntax close to Basic. CL in turn
provides a subset of BPEL’s capabilities [9]: the capabilities
of built-in eventhandling, fault handling and compensation
handling have been dropped. While BPELscript supports all
control flow and data handling constructs of BPEL, SSCL
provides “two control-flow constructs: if-then-else [...] and
while”, but no support for data manipulation. A translation
from SSCL to CL is available, whereas a translation of
CL to SSCL is not. Thus, SSCL cannot be integrated fully

in the BPM lifecycle, whereas BPELscript can.
The BPEL to Java (B2J) subproject2 offers a translation

of executable BPEL to executable Java classes. While the
Java classes can be modified, the Java classes cannot be
transformed back to a single BPEL process. Thus, the
modifications cannot be deployed on workflow engines. In
addition, the translation is not capable to deal with abstract
BPEL processes.

There exist several formalizations for BPEL. By mapping
BPEL to a formal model, BPEL gets a new syntax, too.
An overview of existing formalizations is given in [10].
The only translation from a formal syntax back to BPEL is
known for Open Workflow Nets [11] and is presented
in [12]. Open Workflow Nets (oWFNs) are based on
workflow nets [13], which in turn are based on Petri nets.
Since the oWFNs cannot cope with variable manipula-
tion [14] and abstract from implementation details [12],
oWFNs cannot be used as an alternative rendering of BPEL
processes.

After an IT expert modified the BPEL process towards
execution, the business analyst may want to check whether
the resulting BPEL process matches his business process
model. This is either achieved by conformance checking
techniques as presented in [15] or by mapping BPEL to
BPMN [16]. Since BPELscript can be completely mapped
to BPEL, the business analyst can use existing tools to
check the conformance of the executable BPEL process
with his process definition.

There is research whether visual programming or textual
programming is better for program comprehension and
for modifications of programs. In the case of structured
flow-charts versus pseudocode, [17] shows that flow-charts
are better for program comprehension. The experience
report presented in [18] shows that “visual programming
significantly reduces system development time”. [19]
states that “graphics may be better for technical, non-
programmers than they are for programmers because of
the great amount of experience that programmers have
with textual notations in programming languages.”. Finally,
the studies presented in [20]–[22] show that “graphics [is]
significantly slower than text” [23]. All in all, it is not
finally proofed that visual programming is (in all cases)
more suitable than textual programming. BPELscript and
BPEL act on the same level, since both are textual descrip-
tions. Currently, there is no research whether programmers
are more effective using XML syntax or JavaScript-like
syntax. For a comprehensive evaluation of a language, the
development environment also has to be evaluated. The
cognitive dimensions framework [24] provides a good basis
for a comprehensive language evaluation. By presenting
BPELscript this paper is a first step towards the comparison
of BPEL and BPELscript.

IV. ENABLING GRAPH-ORIENTED PROGRAMMING

BPEL offers both, block-structured and graph-based
programming [25]. Block-structured constructs are known
from Java and other programming languages. In BPEL,

2http://www.eclipse.org/stp/b2j/

http://www.eclipse.org/stp/b2j/

sequence is used to put activities in a sequence, if
provides branching capabilities and loops can be expressed
using repeatUntil, while and forEach. The flow
activity is used for parallel processing. For graph-based
programming, links can be explicitly defined within a
flow activity to model synchronization. The link can be
annotated with a transition condition. During the execution,
the transition condition is evaluated and the status of the
link set to the evaluation result. As soon as the status of all
incoming links of an activity is defined, the join condition
is evaluated. The join condition is a Boolean function over
the status of the incoming links. Using join conditions,
AND, OR and XOR joins can be modeled. If the join
condition evaluates to true and the activity is executed. As
soon as the activity is finished, the transition conditions
of each outgoing link is evaluated and the result written
as status to the link. The status of each outgoing link is
set to false if the join condition evaluates to false. This
execution semantics is called dead-path elimination (DPE)
and is described for BPEL in [3], formalized in [26] and
described in detail in [27].

Current structured programming languages do not have a
first-class citizen to express control flow in terms of graphs.
The structure and the current status of the graph is mainly
stored in variables. Within the development of SimPEL,
the Apache ODE team proposed two ideas to establish
graph-oriented programming within a “structured program”
approach [7], [28]. Main goals of these ideas are (i) to
provide a scripting syntax inspired by JavaScript and Ruby
and (ii) to combine the syntax of the fork/join parallelism
concept with the semantic of BPEL. In summary, these
approaches point to possible solutions to establish graph-
oriented programming within a block-structured language:

(i) use an extended goto syntax (proposed by [28])
(ii) introduce new activities for forking and joining, with

a new semantics (proposed by [7])
Option (i) is more close to BPEL. BPEL does not use
explicit activities to fork and join, but uses properties
of activities for that. In the XML serialization, these
properties are realized as sub elements of the respective
activity. For example, an AND join at an activity with
two incoming links l1 and l2 is implemented by the
attribute joinCondition="$l1 and $l2". The at-
tribute joinCondition can be put at any activity. There
is no explicit AND join activity as it is the case at BPMN
with the parallel gateway.

Option (ii) is more close to usual programming. In
contrast to introduce new syntax elements, there are new
statements with a certain semantics are introduced.

On the one hand, links are properties of activities.
Thus, it seems to be natural to reflect them also as
properties of statements in BPELscript (e. g. by using
annotations). On the other hand, such properties are
a new construct in common programming languages
and thus these constructs tend to raise the feeling of
strangeness at programmers. Thus, we use a syntax being
similar to activity statements, but translate these to sub
elements of the belonging activity. A fork is expressed

using signal(<linkName>,<condition>);.
This is translated to a BPEL link annotated
with the given link name and the given condition
as transition condition as source child element
of the preceding activity. Joining is expressed by
join(list of links, joinCondition);.
BPEL’s default join condition is a logical or over all
incoming links. This join condition can be overwritten
using the joinCondition attribute. A join is
translated to a target element of the subsequent activity.
To illustrate the usage of signal and join, we show
the representation the loan approval process in the next
section.

It is important to note that representing graphs in a
textual syntax is equivalent to programming using goto
statements. Thus, the issues for goto programming [29]
remain the same in the case of BPELscript. The aim of
BPELscript is not to change the way business processes
can be modeled with BPEL and to stay close to BPEL.
Furthermore, signal and join enable parallelism. Thus,
a transformation unstructured graphs to structured ones is
not always possible [30].

V. REPRESENTING BPEL IN BPELSCRIPT

BPELscript is designed to cover all features of BPEL.
In this section, we outline the syntax of BPELscript and
list the arguments which lead to the presented syntax.

Figure 5 presents the two parts of a BPELscript process:
header and the process itself. The header contains names-
pace and import declarations. The namespace keyword
is used to declare XML namespaces as the xmlns attribute
does for XML [31]. import imports external types, such
as WSDL message types or WSDL port types. WSDL
stands for Web Services Description Language and is an
interface definition language that defines the operations
offered by a Web service [32]. BPEL distinguishes basic
and structured activities. In general, structured activities are
used to define the control flow structure and basic activities
are the activities communicating with Web services and
that manipulate data. In BPELscript basic activities are
introduced with its activity keyword and are separated
by a semicolon. For example receive is translated to
receive and invoke to invoke. The only exception
is the assign activity, which is directly translated to an
assignment statement. The concrete syntax together with
variable declarations is presented in Section V-B. Structured
activities starts with its keyword too but are followed by
an implicit sequence enclosed by single curly brackets.
An explicit sequence construct is not introduced in
BPELscript. Several statements in sequence are put in a
BPEL sequence activity. For the flow activity SimPEL
decided to provide parallel as keyword instead, since
it sounds more familiar with concurrent execution [7]. We
follow this argument and use parallel as translation
for BPEL’s flow.

A. Attributes

In BPEL, an activity can take mandatory and optional
attributes. For example, the operation attribute is

// header
namespace* import*
// process
process tns::Name {

activity;
}

// denotes a comment, * marks
an element appearing zero or
more times.

Figure 5. The structure of a BPELscript process

partnerLink plink =
(ns::plType, roleName?, roleName?);

? marks an optional element.

Figure 6. Declaration of partner links

mandatory for the invoke activity, but the name attribute
is optional. Mandatory attributes are put as parameters at
the respective statement. Optional attributes are supported
in BPELscript by using the annotation concept of Java.
This means, that optional attributes are prefixed with an
’@’-tag and placed in front of its corresponding statement.

B. Data handling

Partner links are used in BPEL to model a relationship
between the BPEL process and a Web service. A partner
link has a partner link type. The partner link type defines
one or two roles and assigns one port type to each role.
When instantiating a partner link type as partner link, one
has to name the partner link type and state which role
the process takes and which role the partner takes. To
declare partner links, BPELscript uses a syntax similar to
variable declarations in structured programming languages.
Figure 6 presents the concrete syntax. plink is the name
of the declared partner link. ns::plType is a reference
to the partner link type to instantiate. The first roleName
attribute denotes the role the business process takes. The
second roleName attribute denotes the role of the partner.
Role names can be omitted or set to null if the interaction
is one-way only.

For the handling of process data, which are variables
holding the state, BPELscript adopts the implicit variable
declaration from SimPEL. In addition to implicit variable
declaration, variables and partner links can be declared
explicitly everywhere in a process.

Since BPELscript is block-structured, it provides assign-
ments as usual with lvalue=rvalue [33]. As outlined
in Figure 7, assignments appear in seven variants:

(i) literal assignment
(ii) reading from a message part

(iii) reading from a variable property
(iv) partner link assignments
(v) assignment from an expression

(vi) extended assignments using copy
(vii) extended assignments using or

extensionAssignOperation

The simplest form of an assignment is to overwrite the
value of a variable with a new literal. In BPELscript this
is realized as lvalue = "literal".

In WSDL, a message has at least one part. If one such
part has to be read, BPEL uses a dot as delimiter between

1 // literal assignment
2 my_var = "some value";
3
4 // reading from a message part
5 my_var = another_var.part;
6
7 // reading from a variable property
8 my_var = another_var#attr;
9

10 // partner link assignment
11 plink1 = plink2.myRole;
12 plink3 =
13 "<sref:service-ref>...</sref:service-ref>"
14
15 // expressions
16 my_var = a + b;
17
18 // using XPath as expression language for rvalues
19 my_var = [bpel:doXslTransform
20 ("urn:stylesheets:A2B.xsl", $A)];
21
22 // using an arbitrary language as
23 // expression language for rvalues
24 my_var = [expression in language1]
25 @queryLanguage="urn:language1";
26
27 // extended assign operation
28 {{{
29 <extensionAssignOperation>
30 <js:snippet>
31 ... JavaScript/E4X code ...
32 </js:snippet>
33 </extensionAssignOperation>
34 }}}

Figure 7. Examples of assignments

the variable storing the message and the part. In BPELscript,
we reuse this idea.

BPEL defines message properties to access a value in
different types of variables. For example, the customer
number may be located in the order message and in the
order conformation message. To read from a property, the
syntax lvalue = variable#property is used.

Assignments which affect partner links are similar to
variables. In BPEL, the partner link variable stores the end
point reference (EPR), which denotes where the partner
can be reached. This EPR can be either read from the
myRole or from partnerRole. A write to a partner
link is always interpreted as write to the partnerRole
element of a partner link. Therefore, .partnerRole is
omitted in the lvalue of the partner link assignment. It is
also possible to directly write EPRs to a partner link. In
this case, the EPR has to be directly given as literal.

Expressions themselves follow the format defined by
ECMAScript for XML (E4X, [34]). E4X is an official
standard that adds direct support for XML to JavaScript.
Thus, it is an ideal format to define expressions. The current
implementation of the BPELscript translator only supports
+, −, ∗ and / as operators.

BPEL’s default language for expressions in assign-
ments is XPath 1.0 [35]. BPEL allows to change the
expression language by using queryLanguage. This
attribute is directly supported in BPELscript via the
@queryLanguage annotation. In case BPEL’s way of
defining expressions is used, these expressions are enclosed

by squared brackets as proposed by [7] and translated
literally to BPEL.

In addition to changing the expression language for
lvalues or rvalues, BPEL also allows an assign statement
as a whole to be defined in a specified expression language.
BPEL uses extensionAssignOperation as XML
tag, which is reused in BPELscript. The XML element
is nested in curly brackets, which denote that the content
has to be literally translated. In case the extension assign
operation is used, this feature has to be supported by the
BPEL engine. In the case of E4X, the implementation is
described in [36].

C. Fault handling

BPEL’s construct to group activities together into a
transactional unit is the scope activity. A scope activity
provides fault, termination, compensation and event
handling [3]. If an activity in a scope faults, the fault is
delegated to a matching fault handler. A fault handler
matches, if the name of the fault matches the name given
in the fault handler. Otherwise, the fault is propagated
one level up. If only fault handling should be specified
for a group of activities, BPELscript offers the common
try {...} catch (faultName) |faultVariable|

syntax. The variable, where the fault information should
be stored is specified via vertical bars. This simplified
syntax is used in line 43 of Figure 4.

A scope is terminated if the enclosing scope encountered
a fault or is terminated by itself. In this case, the termination
handler is run. A scope may be compensated if it is
completed. Compensation may only be started by a
fault handler or compensation handler of the enclosing
scope. Explicit compensation handling is defined in a
compensation handler.

In business processes, it is important to wait at some
point on an event [26]. An event may be a receipt of
a message or the occurrence of a timeout. Since it is
not always desired to interrupt the business process logic
with a synchronous wait or a blocking receive, BPEL
provides an asynchronous execution with event handlers.
They are associated with its enclosing scope whose lifecycle
determines the lifecycle of the handler. Event handlers are
invoked when the corresponding event occurs.

Figure 8 presents the syntax of a scope in BPELscript.
To offer a single way to specify fault handlers,there is
no catch support at a scope statement: a catch has
always to be specified together with a try.

VI. TRANSLATING BPEL TO BPELSCRIPT AND VICE
VERSA

As a proof of concept we implemented the “BPEL to
BPELscript Translator” named bosto. The cornerstones of
bosto are:

(i) to provide an extensible and fault-tolerant translation
system which can be easily changed and

(ii) to use automated tools such as ANTLR [37] and
ANTXR [38].

1 scope scopename {
2 nop;
3 }
4 onCompensation { // compensation handler
5 nop;
6 }
7 onTermination { // termination handler
8 nop;
9 }

10 onEvents { // event handlers
11 event(parterLink, operation) {
12 nop;
13 }
14 timeout(p50d) {
15 nop;
16 }
17 }

Figure 8. Illustration of scopes in BPELscript

BP
EL

sc
ri

pt
BP

EL

Phase 1
Lexer

Phase 2

Parser

Phase 3
Tree Translation

Phase 5
Unlexer

Phase 4
Unparser

AST

AST

Standard
XML Parser

Tree Building
Parser

Tree
Parser

Combined Grammar (Tree Building)

Figure 9. Translation process

ANTLR stands for“ANother Tool for Language Recog-
nition” and is a tool that provides a framework for con-
structing language translators. ANTXR stands for ANother
Tool for XML Recognition and extends ANTLR to support
XML files.

A translation needs a broad understanding of the trans-
lation artifacts and has to cope with context. Therefore it
is necessary to process a highly condensed version of the
input which is called Abstract Syntax Tree (AST). The
translation from BPEL to BPELscript is split into three
parts:

(i) process an ASTa

(ii) translate ASTa into its counterpart ASTb

(iii) “unparse” the ASTb.
The whole process is shown in Figure 9. First, the BPEL

process is parsed using a standard XML parser. ANTXR
is used in phase 2 to build an AST of the BPEL process.
A DOM tree cannot be used, since ANTLR does not
support to specify tree translations for DOM trees, but
for AST trees. In phase 3, the AST is translated to an
AST representing the corresponding BPELscript AST. This
AST is translated to a BPELscript file using a grammar
combining the unparsing and unlexing of the BPELscript
AST.

The translation from BPELscript to BPEL follows the
same principle: first, BPELscript is lexed and parsed into an
AST. This AST is then translated into a BPEL AST, which

in turn is serialized in XML using a combined grammar.
Since the BPM lifecycle has the aim to continuously

improve the process model, a process definition is never
stable and is permanently adapted. Thus, the BPEL process
has to be remodeled all the time and consequently the
BPELscript representation will change accordingly. In order
to keep the technical details that have been added during
the executable completion within the configuration phase,
the model cannot simply be regenerated but rather needs
to be updated in a smart way. Therefore we take the
original generated model BSg and the model generated
within the second lifecycle round BS ′

g to compute the
difference ∆(BSg,BS ′

g). The result is being translated
into an editscript [39] ∆E that describes a sequence of
edit operations to transform BSg to BS ′

g . Let BSe be the
executable completion of BSg . Now we apply ∆E to BS ′

g

to get a starting point for BS ′
e that contains both, the new

semantics of the process model and the refinements made
in the previous lifecycle round. Note that it may be possible
that not all editscript operations can be applied to the new
model in case the model has significantly changed. This
approach, however, makes it easier to cope with model
changes during the configuration phase. As a side effect, the
formatting and program organization made by the developer
in the first round are kept. A detailed discussion of applying
differences to models is discussed in [40].

VII. CONCLUSION AND FUTURE WORK

We presented a new syntax of BPEL called BPELscript
and sketched the integration in the BPM lifecycle. The
syntax of BPELscript is not derived by simply replacing
the opening and closing XML tags by opening and
closing curly brackets: In the case of variables, BPELscript
allows implicit variable declarations. The possibilities
for data manipulation of BPEL are replaced by an E4X
syntax. BPEL supports optional and mandatory attributes,
which are reflected as annotations (@) and parameters for
functions respectively. Finally, we discussed the reflection
of control links offered by the flow activity as separate
statements instead of sub-elements of a statement.

The full syntax of BPEL script and the translator is de-
scribed in [41]. An online version of the presented translator
is available at http://www.bpelscript.org, the full source
code is available at http://code.google.com/p/bpelscript/.
The current translation covers all important cases and shows
that the idea of a two-way translation works. Ongoing work
is to provide an IDE for BPELscript editing including
syntax highlighting and online syntax check using the
Eclipse Dynamic Languages Toolkit (DLTK3). This enables
BPELscript to be evaluated using the cognitive dimensions
framework [24].

The next step in BPELscript development is to develop
a type system to ensure proper explicit variable declaration
in BPEL of implicitly declared variables in BPEL script.
In parallel, we are going to assess the acceptance of
BPELscript in the industry and prove the effectiveness
of BPELscript in comparison to directly edit XML code.

3http://www.eclipse.org/dltk/

ACKNOWLEDGMENTS

This work is supported by the BMBF funded project
Tools4BPEL (01ISE08B) and by the SUPER project4 under
the EU 6th Framework Programme Information Society
Technologies Objective (contract no. FP6-026850).

REFERENCES

[1] M. Weske, Business Process Management: Concepts, Lan-
guages, Architectures. Springer-Verlag, 2007.

[2] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. F. Ferguson, Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging and More. Prentice Hall PTR, 2005.

[3] OASIS, “Web Services Business Process Execution Lan-
guage (WS-BPEL) – Version 2.0,” 2007, http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[4] Business Process Modeling Notation, V1.2 – OMG
Available Specification, Object Management Group, Jan.
2008. [Online]. Available: http://www.omg.org/spec/BPMN/
1.2/PDF

[5] C. Ouyang, M. Dumas, S. Breutel, and A. ter Hofst-
ede, “Translating Standard Process Models to BPEL,” in
Proceedings 18th International Conference on Advanced
Information Systems Engineering (CAiSE), ser. Lecture
Notes in Computer Science, vol. 4001. Springer-Verlag,
June 2006.

[6] G. Bischoff, R. Kersten, and T. Vetter, “Vergleich
von BPEL-Workflow Modellierungstools,” Student
Report Software Engineering, IAAS, Universität
Stuttgart, May 2005, (in German). [Online].
Available: http://www.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL view.pl?id=FACH-0038&engl=1

[7] A. Boisvert, A. Arkin, and M. Riou, “BPEL
SimplifiedSyntax (simPEL),” 2008. [Online]. Available:
http://ode.apache.org/bpel-simplified-syntax-simbpel.html

[8] I. Gavran, A. Milanovic, and S. Srbljic, “End-User Pro-
gramming Language for Service-Oriented Integration,” in
7th Workshop on Distributed Data and Structures, 2006.

[9] D. Skrobo, A. Milanovic, and S. Srbljic, “Distributed
Program Interpretation in Service-Oriented Architectures,”
in 9th World Multi-Conference on Systemics, Cybernetics
and Informatics (WMSCI 2005), 2005.

[10] F. v. Breugel and M. Koshkina, “Models and Verification
of BPEL,” 2006. [Online]. Available: http://www.cse.yorku.
ca/∼franck/research/drafts/tutorial.pdf

[11] P. Massuthe, W. Reisig, and K. Schmidt, “An Operating
Guideline Approach to the SOA,” Annals of Mathematics,
Computing & Teleinformatics, vol. 1, no. 3, pp. 33–43,
2005.

[12] N. Lohmann and J. Kleine, “Fully-automatic Translation
of Open Workflow Net Models into Simple Abstract
BPEL Processes,” in Modellierung, ser. Lecture Notes in
Informatics, vol. P-127. Gesellschaft für Informatik e. V.,
2008.

[13] W. M. P. van der Aalst, “The application of Petri nets to
workflow management,” Journal of Circuits, Systems and
Computers, vol. 8, no. 1, pp. 21–66, 1998.

[14] N. Lohmann, “A Feature-Complete Petri Net Semantics
for WS-BPEL 2.0,” in 4th International Workshop on
Web Services and Formal Methods, ser. Lecture Notes in
Computer Science, vol. 4937. Springer-Verlag, 2007.

[15] A. Martens, “Consistency between Executable and Abstract
Processes,” in 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE’05). IEEE
Computer Society, 2005.

4http://www.ip-super.org

http://www.bpelscript.org
http://code.google.com/p/bpelscript/
http://www.eclipse.org/dltk/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/BPMN/1.2/PDF
http://www.omg.org/spec/BPMN/1.2/PDF
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=FACH-0038&engl=1
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=FACH-0038&engl=1
http://ode.apache.org/bpel-simplified-syntax-simbpel.html
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://www.ip-super.org

[16] M. Weidlich, G. Decker, A. Großkopf, and M. Weske,
“BPEL to BPMN: The Myth of a Straight-Forward Map-
ping,” in 16th International Conference on Cooperative In-
formation Systems (CoopIS), ser. Lecture Notes in Computer
Science, vol. 5331. Springer-Verlag, 2008.

[17] D. A. Scanlan, “Structured Flowcharts Outperform Pseu-
docode: An Experimental Comparison,” IEEE Software,
vol. 6, no. 5, pp. 28–36, Sep 1989.

[18] E. Baroth and C. Hartsough, “Visual programming in the real
world,” in Visual object-oriented programming: concepts
and environments. Manning Publications Co., 1995.

[19] J. D. Kiper, B. Auernheimer, and C. K. Ames, “Visual
Depiction of Decision Statements: What is Best forPro-
grammers and Non-Programmers?” Empirical Software
Engineering, vol. 2, no. 4, pp. 361–379, 1997.

[20] T. R. G. Green, M. Petre, and R. K. E. Bellamy, “Com-
prehensibility of visual and textual programs: a test of
superlativism against the ’match-mismatch’ conjecture,” in
Empirical Studies of Programmers, Fourth Workshop. Open
University, Computer Assisted Learning Research Group,
1991.

[21] T. R. G. Green and M. Petre, “When visual programs are
harder to read than textual programs,” in Sixth European
Conference on Cognitive Ergonomics (ECCE-6), 1992.

[22] T. Moher, D. Mak, B. Blumenthal, and L. Leventhal,
“Comparing the comprehensibility of textual and graphical
programs: The case of Petri nets,” in Empirical Studies of
Programmers: Fifth Workshop. Ablex, 1993.

[23] M. Petre, “Why looking isn’t always seeing: readership
skills and graphical programming,” Commun. ACM, vol. 38,
no. 6, pp. 33–44, 1995.

[24] T. R. G. Green and M. Petre, “Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’
Framework,” Journal of Visual Languages & Computing,
vol. 7, no. 2, pp. 131 – 174, 1996.

[25] O. Kopp, D. Martin, D. Wutke, and F. Leymann, “The Differ-
ence Between Graph-Based and Block-Structured Business
Process Modelling Languages,” Enterprise Modelling and
Information Systems, vol. 4, no. 1, pp. 3–13, June 2009.

[26] F. Leymann and D. Roller, Production workflow: concepts
and techniques. Prentice Hall PTR, 2000.

[27] F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana,
“Exception Handling in the BPEL4WS Language,” in
International Conference on Business Process Management
(BPM), ser. Lecture Notes in Computer Science, vol. 2678.
Springer-Verlag, 2003.

[28] T. van Lessen and O. Kopp, “BPEL Simplified Syntax
(simBPEL),” 2008. [Online]. Available: http://ode.apache.
org/bpel-simplified-syntax-simbpel.html

[29] E. W. Dijkstra, “Letters to the editor: go to statement
considered harmful,” Commun. ACM, vol. 11, no. 3, pp.
147–148, 1968.

[30] B. Kiepuszewski, A. H. M. ter Hofstede, and C. J.
Bussler, “On Structured Workflow Modelling,” in Advanced
Information Systems Engineering, ser. Lecture Notes
in Computer Science, vol. 1789. Springer Berlin /
Heidelberg, 2000, pp. 431–445. [Online]. Available:
http://www.springerlink.com/content/r3b8597wgqgjpy6r/

[31] Namespaces in XML 1.0 (Second Edition), W3C, Aug. 2006.
[Online]. Available: http://www.w3.org/TR/xml-names/

[32] Web Services Description Language (WSDL) 1.1, W3C,
Mar. 2001. [Online]. Available: http://www.w3.org/TR/
2001/NOTE-wsdl-20010315

[33] S. Muchnick, Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann, 1997.

[34] Standard ECMA-357—ECMAScript for XML (E4X)
Specification, Ecma International, 2005. [Online].
Available: http://www.ecma-international.org/publications/
files/ECMA-ST/Ecma-357.pdf

[35] XML Path Language (XPath) Version 1.0, W3C, Nov. 1999,
http://www.w3.org/TR/xpath.

[36] T. van Lessen, J. Nitzsche, and D. Karastoyanova, “Facil-
itating Rich Data Manipulation in BPEL using E4X,” in
ZEUS: Zentraleuropäischer Workshop über Services und
ihre Komposition, vol. 438. CEUR Workshop Proceedings,
2009.

[37] T. Parr, The Definitive ANTLR Reference: Building Domain-
Specific Languages. Raleigh: The Pragmatic Bookshelf,
2007.

[38] S. Stanchfield et al., “ANTXR: Easy XML Parsing,
based on the ANTLR parser generator, Website.” [Online].
Available: http://www.antlr.org/

[39] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom, “Change detection in hierarchically structured
information,” in Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data. Assn for
Computing Machinery, Jun. 1996, pp. 493–504.

[40] E. Kindler, P. Könemann, and L. Unland, “Difference-based
model synchronization in an industrial MDD process,” in
2nd ECMDA Workshop on Model-Driven Tool & Process
Integration (MDTPI 2009), 2009.

[41] M. Bischof, “Translating WS-BPEL 2.0 to
BPELscript and Vice Versa,” Studienarbeit,
IAAS, Universität Stuttgart, 2008. [Online].
Available: http://www.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL view.pl?id=STUD-2175&engl=1

All links were followed on 2009-05-27.

http://ode.apache.org/bpel-simplified-syntax-simbpel.html
http://ode.apache.org/bpel-simplified-syntax-simbpel.html
http://www.springerlink.com/content/r3b8597wgqgjpy6r/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf
http://www.w3.org/TR/xpath
http://www.antlr.org/
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2175&engl=1
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2175&engl=1

	Introduction
	Loan Approval in BPELscript
	Related Work
	Enabling Graph-Oriented Programming
	Representing BPEL in BPELscript
	Attributes
	Data handling
	Fault handling

	Translating BPEL to BPELscript and Vice Versa
	Conclusion and Future Work
	References

