
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{wieland, goerlach, schumm, leymann}@iaas.uni-stuttgart.de

Towards Reference Passing in Web Service and
Workflow-Based Applications

Matthias Wieland, Katharina Görlach, David Schumm, Frank Leymann

© 2009 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{WielandGSL09,
author = {Matthias Wieland and Katharina Görlach and David Schumm and

Frank Leymann},
title = {Towards Reference Passing in Web Service and Workflow‐Based

Applications},
booktitle = {Proceedings of the 13th IEEE International

Enterprise Distributed Object Computing Conference, EDOC 2009,
1‐4 September 2009, Auckland, New Zealand},

year = {2009},
pages = {109‐118},
doi = {10.1109/EDOC.2009.17},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

Towards Reference Passing in Web Service and Workflow-based Applications

Matthias Wieland, Katharina Görlach, David Schumm, Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart, Germany

Firstname.Lastname@iaas.uni-stuttgart.de

Abstract

In a Service-Oriented Architecture (SOA) based on Web
Service technology the services typically communicate
with each other by passing data values directly from
one service to another. In the case the services are or-
chestrated by workflows the services receive their input
values from the workflow engine and return their calcu-
lated results back to the engine by value. In this paper
we show several use cases where such value passing
behavior has drawbacks. To address this challenge we
introduce the concept of pointers in SOA. Pointers al-
low services to pass their data by reference which is a
fundamental advantage for Web Service communication.
Furthermore we show an extension of BPEL that intro-
duces reference variables as new type of data containers
in workflows. In addition, for the management of point-
ers we present the Reference Resolution System which
can be used in very flexible setups either as central or
distributed system.

1. Introduction

Workflow technology provides methodologies and
corresponding products to support modeling, execution,
and management of business processes that have been
carried out manually and through a diversity of non-
integrated systems before [15]. Thus BPEL (Business
Process Execution Language [3]) as a standard for work-
flow modeling and execution gained major influence
in many enterprises and within the software industry.
BPEL is building on the Web Service (WS) standards
and provides a recursive aggregation model for WSs [7].
As BPEL is more and more used in different application
domains, special requirements and new challenges arise.
One important requirement that exists in many of such
domains is a mechanism that allows using reference pass-
ing instead of the standard value passing behavior. In
standard BPEL, data is stored in variables and is always

passed by value to and from the WS to the workflow.
As a solution we introduce a new type of BPEL vari-
ables, so-called reference variables, which can be used
as pointers to data. Thereby, only pointers have to be
passed between WSs and workflows and not the values
of the variables anymore.

As motivation we present in the following three very
distinct domains where this requirement occurs:

• Context-aware workflows [21]: Dynamic context
data is changing very often because it is sensed with
a high sampling rate. Therefore, in [21] a dynamic
context variable was described as requirement of
context-aware workflows. The BPEL reference
variables introduced in this paper can be applied for
exactly that dynamic evaluation of variables with-
out explicitly updating them with an invoke activity
in the workflow.

• Compliance [8]: Flexibly reacting to frequently
changing requirements coming from laws and regu-
lations, such as [16], becomes a necessary part of
business process management. Using references to
static values outside the business processes that are
part of those requirements allows flexible adaption
of business logic by changing the value once in the
reference management system. The process model
and all of its running instances do not have to be
changed. The next time the value is used in any
process it will be updated automatically because
the system dereferences the actually valid value.

• Scientific workflows [6]: In scientific workflows
large amounts of data are processed. By the usage
of data references transmission of huge data sets to
and from the workflow system can be reduced.

To share pointers between WSs and workflows they
have to be managed externally to the workflow sys-
tem. This allows building a global or company-wide
variable concept which extends the BPEL variable con-
cept that only supports process-wide accessible variables.

2009 IEEE International Enterprise Distributed Object Computing Conference

1541-7719/09 $25.00 © 2009 IEEE

DOI 10.1109/EDOC.2009.17

109

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

Based on the previously described domains we identified
two general use cases for reference variables: Realiz-
ing global dynamic variables covering the domain of
context-aware workflows and compliance (described in
section 1.1) and data flow between WSs covering the do-
main of scientific workflows (described in section 1.2).

As defined in [17] a pointer is a programming lan-
guage construct whose value refers directly to a value
stored elsewhere. Thus a pointer is also called reference,
and resolving the value to which a pointer refers to is
called dereferencing the pointer, thus in this paper we
use the term pointer and reference interchangeably. In
programming languages pointers to data usually improve
performance for repetitive operations such as traversing
data [17].

For this paper that definition of a pointer is not precise
enough. We use two types of pointers: direct pointers
that fit the previously cited definition (e.g., a pointer on a
hash value). Additionally we introduce indirect pointers.
This type of pointer extends the existing definition as
follows: An indirect pointer is a programming language
construct whose value refers indirectly to a value stored
elsewhere. Indirectly means the pointer points to an
artefact (e.g. SQL query) that can be used to retrieve the
value from a given system (e.g., SQL database).

In the REST architecture introduced in [11] refer-
ences are a central part. A Uniform Resource Identifier
(URI) [5] can be used for pointing to a resource. This
paper uses concepts of REST to introduce references in
SOA. We represent a reference in form of an Endpoint
Reference (EPR) [20] (see Section 3.1). This EPR con-
tains a set of references (i.e. URIs) that are combined in
a semantic structure in the EPR: one URI for the refer-
ence resolution system and another URI for parameters
used for the resolution of the reference (e.g., to address
an SQL query). Our reference representation as EPR
is designed self-contained. Therefore our EPRs can be
used to transfer the complete state like in REST. Since
there is the need for references in SOA we proposed this
way of realization with existing Web Service standards.

The introduction of references to SOA has the follow-
ing advantages:

• Reduced data transfer over the network: No data
transmission to process engine forth and back be-
tween every Web Service call would be needed
anymore.

• Improved performance of workflows: The process
engine only has to handle the pointer, not the data
itself. This leads to faster workflow execution. The
Web Services themselves could handle the secure,
traceable storage of the data.

• Improved workflow modeling: No technical actions

>($threshold)<=($threshold)

<variable>

 xsd:double threshold=10000

</variable>

<invoke>

A

<invoke>

B

<invoke>

C

(a) Todays implementation of
process variables.

<invoke>

C

>($threshold)<=($threshold)

Reference Variable:

xsd:double threshold=10000

Pointer

<referenceVariable>

 xsd:epr threshold=<EPR>

</referenceVariable>

<invoke>

A

<invoke>

B

<invoke>

C

(b) Reference variable used in dif-
ferent workflows.

Figure 1. Example for a global company wide
threshold variable.

like updating static values in process models are
needed anymore if pointers are used. This results
from the automatic dereferencing of the pointer on
usage.

1.1. Use Case 1: Global Dynamic Variable

The first generic use case for pointers in workflows is
the usage of global variables that are valid and accessible
beyond different workflows. This use case is illustrated
in Figure 1. An example workflow is shown in (a) that
uses the value of variable threshold for the evaluation
of the transition condition between the activities A, B
and A, C. In this example the value is stored in a stan-
dard BPEL <variable>. But let us assume there are
a lot of different workflows using this threshold value,
as in (b). In this case it is important to store the value
outside the workflow, because otherwise if the value has
to be changed, every workflow using it has to be remod-
eled and redeployed. This change might happen very
often, e.g., because of a change in the dollar price, the
federal funds rate or the company risk level. To keep
this strategic values out of the control flow in (b) the
pointers introduced in that paper are used. A transpar-
ent usage of pointers is realized in BPEL with the new
construct <referenceVariable>. This allows an
easy adaptation of running workflow instances without
changing the underlying workflow model by adapting
the value outside of the workflow in the Reference Res-
olution System (RRS) that stores the valid value of the
threshold pointer. In this use case the pointers are deref-
erenced by the workflow engine itself, every time the
re f erenceVariable is used in the control flow.

In the previous example the update frequency of the
value is not very high. But there are scenarios where the
dynamic change of the re f erenceVariable is very im-
portant. In the area of context-aware computing, context
data is captured by sensors every second. A context-

110

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

Service

„Filtering“

Service

„Mapping“

Service

„Rendering“

Visualization

<invoke>

Filtering

<invoke>

Rendering

<invoke>

Mapping

Rendering data (data

package size > 1GB)

(a) Transfer of huge data sets
between workflow and services.

Visualization

<invoke>

Filtering

<invoke>

Rendering

<invoke>

Mapping

Service

„Filtering“

Service

„Mapping“

Service

„Rendering“

Endpoint Reference

(data packet size < 1kb)

Rendering data (data

package size > 1GB)

(b) Transfer of references be-
tween workflow and services.

Figure 2. Example for data transfer in scientific
workflows.

aware workflow uses that sensed data as variable data,
but the changes are so fast (<1sec) that it is not possi-
ble to send every change of all context objects to the
workflow. By using pointers, this problem can be solved.
The sensors update the data values directly in the sys-
tem managing the values of the references and only if
a context-aware workflow uses the pointer, the actual
value is dereferenced and used.

1.2. Use Case 2: Data Flow Between Web Ser-
vices

Workflows in the scientific area make use of a more
data-centric approach compared to the business area.
Huge amounts of data have to be processed in analy-
sis, experiments and simulations. Compared to business
workflows the data flow complexity is typically higher
while the control flow complexity is typically less. This
results in lots of transmissions of huge amounts of data
which makes the usage of BPEL very costly for scientific
workflows. The majority of scientific data is of no im-
portance for the process logic, and thus can be ignored
by the workflow management system. By using data
references the transfer of huge amounts of data through
the engine can be avoided, and no relevant information
is lost.

The scientific workflow in figure 2 shows a typi-
cal visualization process in simulations. The visual-
ization workflow receives a lot of data during simulation
time and coordinates the execution of algorithms (filter-
ing, mapping and rendering) on simulation data. When
the simulation produces huge data sets they have to be
passed to the Filtering service. Later the filtered data
has to be sent back to the workflow in order to make
it available to the Mapping service. Similar huge data
sets have to be transferred while invoking the Mapping
and Rendering service. Consequently the execution of
the visualization workflow in figure 2 demands multiple
transports of huge data sets through the engine. Usage
of pointers in the visualization workflow shifts the re-

sponsibility for data transport to participating services
and therefore scales down the amount of data that has to
be transferred through the engine.

This use case addresses all applications where the
transport of data is a cost factor for itself. This is the
case in workflows where huge amounts of data are pro-
cessed by various services, for example in simulation
workflows. The transfer of processed data to the work-
flow engine and back to a subsequent service that takes
care of further processing is not feasible for those ap-
plications in most cases. Yet, one exception is when
this data is relevant for the further flow of control within
the process. This circumstance is taken into account by
introducing references in BPEL without replacing the
common way to treat data, which is call by value and by
allowing to access the value of the reference from within
the workflow.

The data reference concept applies to all workflow
systems, in this paper we demonstrate the approach
based on BPEL, because it is an accepted standard for
describing workflows in a WS environment.

The reminder of the paper is organized as follows: In
section 2 an overview of related work to the contribution
of this paper is presented. Building on that in section 3
the concept and schema structure of pointers as the main
contribution of the paper is presented. Furthermore the
architecture of the RRS as a system for the management
of the introduced pointers and for storage and retrieval
of the values is presented. In section 4, the following
two necessary parts for realizing the contribution are
presented: First we show how to realize a Web Service
wrapper that allows making existing Web Services ca-
pable of passing values by reference without changing
their implementation. Subsequently, we show how to
realize a transparent integration of the pointer concept
in BPEL. Section 5 concludes the paper and describes
future steps and unsolved challenges in the presented
pointers concept.

2. Related Work

BPEL data extensions and SQL integration:
IBM’s information integration for BPEL (II4BPEL) [14]
allows simple and efficient access to relational database
systems, using SQL, from within business processes.
This approach of IBM allows dereferencing an SQL
query to a result set containing the values. But this ap-
proach is tied to the usage of SQL databases for storing
the data. Our approach allows storing the data of the
pointers in any kind of system optimized for that kind of
data. Other vendors provide comparable SQL support in
BPEL which is described in detail in [19]. These solu-
tions could also be used for SQL-based dereferenciation

111

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

of pointers. However, to use theses solutions, vendor-
specific extended BPEL engines are needed. There also
exist extensions to BPEL to cope with data intensive
service applications like BPEL-DT [13]. In that work
it is stated that Web Services and BPEL have weak-
nesses concerning the data aspects [13]. As a solution
to that problem [13] introduces BPEL data transitions
for modeling data flow. In addition our approach intro-
duces pointers for data passing on the Web Service layer
and BPEL reference variables for a transparent usage of
reference-aware Web Services. In [1] a process engine
extension is presented that allows using references to
an internal data storage. However it is engine specific,
not commonly applicable to Web Services and does not
conform to the BPEL standard and, thus, is incompatible
with other vendors.

Business Rules and Compliance: Business Rules
provide a solution for increasing the flexibility of pro-
cesses by separating decision algorithms (i.e., rules)
from the process model. This approach is also applicable
to separate compliance requirements from the process
models, such as the one described in [18]. Due to the
focus of business processes the applicability of business
rules in the field of Web Services in general is limited,
and typically business rules are bound to a certain imple-
mentation for the management and evaluation of rules.

Scientific workflows and BPEL: With BPEL as a
de facto standard for business processes it is reason-
able to use BPEL for the implementation of scientific
workflows. In [2] exception handling, user interaction,
recovery and rollback mechanisms were identified as ad-
vantages of BPEL in the scientific domain. Nevertheless
there exist other requirements like adaption of workflows
or more expressiveness for data handling that have to
be satisfied. The approach presented here enables scien-
tists to use data references during workflow modeling
and avoids huge amounts of data that have to be trans-
ferred through the BPEL engine. Other possibilities for
reducing the amount of data in scientific workflows for
example are utilized in the Pegasus Workflow Manage-
ment System [9]. It provides mechanisms for identifying
existing data that do not need to be produced and the
concept of garbage collection.

3. Architecture of the Reference Resolution
System

Figure 3 shows the architecture of the Reference Res-
olution System (RRS). On the bottom of the figure the
different possible clients of the system are shown:

• Workflows or Web Services that have initially only
the rights to get a value of a reference.

Reference Resolution System (RRS)

Workflow / Web Service / Administrator

value

AWQL query

SQL query

Hash table

treshhold = 10000SQL

database

Nexus

Federation

SQL

Query

Hash

access
...

Reference Retrieval

Web Service Interface

Reference Management

Web Service Interface

get report

insert,

update,

delete

File

access

/home/rrs/sim2/results

FTP

access

user, pass-

word, file

Context

Query

Figure 3. The Reference Resolution System
(RRS) architecture.

• A human user, i. e. the administrator, who has
the rights to insert, update, and delete references
in the system. He also can permit other rights to
a workflow or Web Service, e.g., a workflow ”Set
new risk level” could have the right to make an
update on the threshold in figure 1.

For each of the different clients a Web Service inter-
face is provided by the RRS. It is important to provide
different interfaces as a basis for security and access au-
thorization. This results from the assumption that most
workflows and Web Services only read values of refer-
ences and very seldom do writes. E. g. a context-aware
workflow reads a dynamic context variables to access
the actual context, but the variables are updated only
by sensors behind the scenes and written directly to the
data storage (Nexus Federation). Of course there exist
domains where workflows and Web Services read and
write values similarly. Workflows and Web Services in
such domains use both interfaces in the RRS. The two
different interfaces are:

• The first interface is the Reference Retrieval Web
Service with the operation get and an endpoint
reference (EPR) as input value. The concept of an
EPR is introduced by the Web Services Addressing
standard [20] and can be used without change for
the representation of a pointer. The output of the
operation is the value referenced by the given EPR.

• The second interface is the Reference Management
Web Service, providing three operations: insert
to create a new reference. The input is the value

112

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

of the reference, where to store it and how to re-
trieve the value later, e.g., an SQL insert statement,
and an SQL query for retrieving the value from
a database. The output is a report containing the
newly generated related EPR. The update oper-
ation is used for changing a value stored for a ref-
erence, the input is the new value and how to store
it; the output is a report stating if the update was
successful. Delete removes a reference which
means its value and all additional information is
deleted out of the system. The input value is the
EPR to be deleted, and the output is a report if the
deletion was successful.

The main component is the Reference Resolution Sys-
tem itself. It connects both Web Service interfaces and
holds a set of adapters that integrate very different data
sources. Each adapter consists on the one hand of a
lookup service for stored queries and information and
on the other hand of a execution service for executing
queries on the data source. Based on the reference an
appropriate adapter is selected and used in order to re-
solve the reference to a value. On top of figure 3 the
five most relevant adapters for the use cases are shown.
However the system is extensible and adapters for any
kind of data storage can be added:

• SQL Query for lookup of a stored SQL query and its
execution on any JDBC compatible SQL database.

• Context Query for lookup and execution of an Aug-
mented World Query (AWQL [12]) on the Nexus
Federation [12] to gather context data as value of
the reference.

• Hash access for direct lookup of the value in a hash
table.

• File access for reading data from a file system and
returning the data stream as value.

• FTP access for using remote files as value. To do
so, the credentials username and password have to
be provided.

RRS is designed to be used as a distributed system,
hence different possible setups are supported: Either
add a RRS to every Web Service, or provide a RRS for
each data source, or connect one RRS to the workflow
engine. Resulting from that a reference has to contain
the endpoint of the RRS that is able to resolve the ref-
erence. Thus the aim is to store all information needed
for dereferencing a pointer in the EPR that describes the
reference. The structure of that EPR is described in the
next section.

� �

<wsa:EndpointReference>
<wsa:Address>

xs:anyURI
</wsa:Address>
<wsa:ReferenceProperties>

<rrs:resolutionSystem>
(xs:String | xs:anyURI |
xs:QName)

</rrs:resolutionSystem>
</wsa:ReferenceProperties>
<wsa:ReferenceParameters>

(xs:anyURI |
xs:any)

</wsa:ReferenceParameters>
<wsa:PortType>xs:QName</wsa:PortType>
<wsa:ServiceName PortName="xs:NCName"?>

xs:QName
</wsa:ServiceName>
<wsp:Policy>Policy</wsp:Policy>?

</wsa:EndpointReference>
� �

Listing 1. EPR schema.

3.1. Representation of a Reference in an EPR

After describing the architecture we now present
the most important part of the system, the reference
itself, by describing how it is represented using the WS-
Addressing concept of an EPR [20]. The aim of the
reference design is to keep it as flexible and extensible
as possible and to try to achieve that the EPR is com-
pletely self contained. That means that all information
needed to resolve the reference shall be contained in the
EPR. Listing 1 shows the schema of a EPR and how it
is used for the representation of a reference. The style
of the schema uses the BNF conventions: ”?” denotes
optionally (0 or 1), ”*” (0 or more), ”+” (1 or more) and
”|” represents choice.

The different parts of the EPR are used for the fol-
lowing purposes: The Address part points to the end-
point of the RRS system that is managing the value
of the reference. In ReferenceProperties the
adapter within the RRS for resolving the reference is
specified (resolutionSystem). All information
the resolving adapter needs to work is specified in the
ReferenceParameters. This information can be
either provided directly like for example an SQL query,
or the information can be referenced with a URI. In
this case the information has to be provided on creation
of the reference. Both solutions have advantages: The
direct specification allows changing the query in the
EPR while runtime. The stored query on the other hand

113

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

assures that everybody uses the same query and that
nobody can inject unwanted queries. The PortType
and ServiceName are technical parameters in order
to allow dynamic binding of the RRS. Policy allows
adding non-functional properties to the query execution,
this part is optional. It could for example be used to
specify the quality of context (QoC) that should be valid
for the returned data (e.g., actuality, correctness, etc).

3.2. Main Design Issues and Benefits of the Ar-
chitecture

Self-contained EPR: The EPR holds all data to re-
solve a pointer without any additional knowledge about
the pointer context: the endpoint of the RRS in concern,
the adapter for resolving the pointer and possibly the
query itself. This allows using many different query-
based data management systems. The traceability can be
assured when RRS stores the history of all values over
time. So by using the EPR and the workflow log with
time stamps the workflow data can be requested later for
audit.

Keep BPEL Code Clean: The main advantage is to
keep the real data queries or data handling out of the
workflow models. Whereby the workflow models get
easier to understand for the workflow designer.

Integration of Existing Systems: The RRS allows
the integration of existing data sources that have no
Web Services interface into a SOA environment, be-
cause the RRS together with the EPR and the integration
adapter serves as Web Service interface for these data
sources. Furthermore the advantage is that the existing
data source is improved by using RRS for the access
because the data source now can be accessed by value
and by reference. Furthermore the access of the data
source is possible with one request in both cases and the
data source can be integrated into workflows.

Easy-to-Use Interface: Because dereferenciation of
pointers is the most used operation it has a simple in-
terface for retrieving the values (Reference Retrieval
Service). The management of the values is done using a
more complex and secure interface (Reference Manage-
ment Service).

3.3. Architecture usage examples

In this section the architecture usage is shown for the
two use cases described in section 1. Figure 4 shows
an example for use case 1 (global dynamic variable in

Reference Resolution System (RRS)

Context-aware Workflow

Reference Retrieval

Web Service Interface

Context Query
Context Query Execution

Nexus FederationAWQL query

1. get(EPR)
2. return value (<awml>

<name>Tool 1</name>...)

Context Query Lookup

urn:bpelref:company:nearestToolQuery

 = <awql:awql>
<awql:restriction>
<awql:and>
<awql:equal>...

Reference Management

Web Service Interface

Figure 4. Use case 1: RRS provides dynamic
variables for context-aware workflows.

RRS

Visualization

Workflow

Filtering

Mapping

1

4
2

3

5

Rendering

RRS7
6

8

9
RRS

10
11
12
13

14

Figure 5. Use case 2: RRS for reference pass-
ing between WSs in scientific workflows.

section 1.1). Here a context-aware workflow uses a ref-
erence variable evaluating the nearest tool to a location.
For the workflow the reference is transparently resolved
on demand when the information is relevant for a de-
cision. For retrieving that information a context query
was previously created with the insert statement under
the name: ”urn:bpelref:company:nearestTool”. Now the
workflow uses the reference variable and the workflow
engine resolves it to a value by using the get method
(1.) with the EPR as input. Thereupon the RRS looks
up the stored query for the given name and executes the
query by using the specified Context Query adapter. The
result set is returned to the workflow as return value (2.)

Figure 5 shows an example for use case 2 (see chap-
ter 1.2). The scientific workflow passes references (thin
arrows) instead of values and by that the engine is dis-
charged of handling and passing all the high volume data
results (thick arrows). First of all, the workflow sends

114

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

the first data value to a Filtering service (1). This service
sends the filtered data to its own RRS. The RRS handles
the storage of data and relates a reference to this data.
This reference is sent back to the Filtering service that
returns the reference to the workflow (2). In the next
step, the visualization workflow invokes the Mapping
service and sends data parameters by reference (3). The
Mapping service sends the received reference to the RRS
of the Filtering service which returns the related data (4
and 5). Now the Mapping service can process the data.
Since services are responsible for data transfer in that
way, huge amounts of data in scientific workflows do not
need to be transported through the engine any longer.

As lots of scientific services the Mapping service uses
an external database for the storage of results. In that
case the RRS is deployed near to the data storage system.
The Mapping service sends his results to the RRS of the
favored database which in turn sends the data reference
to the Mapping service (6 and 7).

Further execution of the visualization workflow in
figure 5 invokes the Rendering service which uses dif-
ferent external RRS for data retrieval (10 and 11) and
publication (12 and 13). The RRS that is used for data
publication holds a file system and two data bases. For
scientific workflows the choice of the appropriate stor-
age system should be realized in the RRS depending on
the data character and other criteria.

4. Realization Concepts

Two concepts for realizing the overall architecture are
needed. The basis is the realization of reference-aware
Web Services which is described in section 4.1. Here
we show how to transform Web Services automatically
to reference-aware Web Services. The aim of that is to
allow clients freely to decide for each request whether
they want to use value or reference passing. The second
part is the realization in BPEL, which is presented in
section 4.2. Here the aim is to show how reference-
aware Web Services can be used transparently in BPEL
via reference variables.

4.1. Realization of Reference-aware Web Ser-
vices

Figure 6 shows how existing Web Services can be
extended in order to get reference-aware ones; which
means they can handle references in addition to values
as input or output. The main idea is to generate a Web
Service wrapper. Such a wrapper provides new inter-
faces that accept any combination of input and output of
reference and value (Value in, EPR out; EPR in and out;
EPR in, value out). Each EPR in the input or output of

Reference aware Web Service

external

RRS

Web Service Client

interested in value

generated

Web Service wrapper

IF-1 IF-2 IF-3

existing

Web Service

conventional interface

value

value

EPR

value

use

local callremote call

Web Service Client

interested in reference

Legend:

internal

RRS

EPR
EPR

value

cfg

Figure 6. Realization of the WS wrapper for us-
ing RRS without changing the original WS.

Extended

Process

Modelling Tool Extended

Process

Engine

Process

Transformation

Tool

dereference

dereference

deploy
prepare

deploy

Standard

Process

Engine
Reference

Resolution

System

Figure 7. Alternative ways for realization of ref-
erences in BPEL.

those wrapper interfaces is resolved using the specified
RRS to a value. The resulting value is used to call the
standard interface (value in, value out) of the wrapped
service. The advantage is that value passing can be done
locally and that the existing Web Service does not have
to be modified at all.

The RRS can be installed locally on the same system
or an external RRS can be used. This allows optimiz-
ing the overall system based on the data size and the
surrounding conditions. Thus it is possible to ship the
data to the functions that need the data prior to their
execution.

4.2. Realization in BPEL Processes

We have identified two different approaches for imple-
menting the reference variable extension for BPEL. We
will discuss both of them in the following and highlight
the advantages and shortcomings of each. As shown in
figure 7 there are basically two different options for the
realization, that do either employ model transformation
(represented by the upper branch in the figure), or in-
clude an extension of the process engine (represented by
the lower branch in the figure).

115

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

� �

<referenceVariable name="refName" valueType="xsd:
schema" referenceType="onInstantiation |
fresh | periodic | external" period="
duration"? external="partnerLink"? />*

� �

Listing 2. Code of a <referenceVariable>-
schema.

Modeling References in BPEL: Both approaches
have something in common, which is to extend the tool
for modeling the processes, such as [10], in order to
account for modeling in a reference-aware manner. The
significant difference between the approaches is an addi-
tional model transformation step on the one hand, and
an extension of the process engine on the other. The
modeling of <referenceVariable>s requires in-
troducing a new variable type. Therefore, we propose
the schema shown in listing 2. This extension and its
semantics are valid for both approaches and are thus
discussed first.

The schema is an extension of the standard BPEL
variable schema. The attribute valueType reflects the
data type of the variable that is referenced. The ref-
erence variable itself implicitly has the type xsd:EPR
in order to store the actual reference. Different opti-
mization possibilities can be implemented based on the
pattern of actuality needed for the access to reference
values. This access type can be specified in the attribute
referenceType. In this paper we propose four of
them, many more are conceivable though. The different
types are discussed when inspecting the transformation
approach in detail.

As described in the first use case in section 1.1 it is
often practical to use references to data within a work-
flow system. This allows flexibility and immediate re-
action to change, this could either be required for all
running processes or just for those that start at a certain
point in time. These options represent the information,
when and in which manner a reference should be re-
solved. A required dereferenciation is indicated in the
process model, when a reference variable is accessed,
for example within an <assign> activity. Such ac-
cess is modeled with a special function call, for example
val($referenceName) in order to dereference the
value of the reference, but also allowing to access the
reference, i.e., the EPR, itself.

� �

<variable name="refName" type="xsd:schema"/>
<variable name="refNameEPR" type="xsd:EPR"/>

� �

Listing 3. Code of generated variable
declaration.

Engine Extension Approach: One opportunity for re-
alizing our presented approach is shown in the lower
branch in figure 7. Available open source BPEL engines
such as [4] provide us with the possibility to extend the
execution behavior. Reference handling can directly be
implemented in the execution engine in order to create
a high-performance solution. However, in doing so we
would sacrifice standard-conformance and lose compati-
bility with other engine implementations. We have there-
fore decided to postpone this possibility of realization
and to concentrate on the other, transformation-based
approach that is discussed in the following.

� �

<invoke name="refNameRefresh_1" partnerLink="RRS"
operation="GET" inputVariable="refNameEPR"
outputVariable="refName"/>

� �
Listing 4. Code of dereferenciation activity.

Model Transformation Approach: Employing a
model transformation step before the deployment of the
process model allows us to implement reference han-
dling virtually in processes without requiring a modi-
fication of the execution engine. The basic idea is to
extend the BPEL language [3] only in the modeling tool,
where we distinguish between common variables and
references. The additional transformation step is gener-
ating standard-conform BPEL constructs for reference
handling and injecting them into the original process
model. For each reference that is declared in a process
model, two variable declarations are generated as shown
in listing 3.

The first declaration is used for holding the actual
value, the second to store the pointer to it, which is
represented by an EPR. Furthermore the RRS needs to
be visible in the process model, which is achieved by
generation of an according <partnerLink>. Finally
listing 4 shows the way to actually dereference a pointer
using a service invocation that calls the RRS which is
the main part of the dereferenciation activity.

The transformation approach injects variable declara-
tion and the dereferenciation activities into the workflow,
in order to perform the refreshment of the value of the
reference. As mentioned above the attribute reference-
Type allows the modeler to choose between the different
options for refreshment of the values. Depending on
the modeler’s choice for this attribute, the dereferencia-
tion activities need to be injected into the process at the
appropriate positions as follows:

• onInstantiation (default): At the instantiation of
the process the value is retrieved from the RRS
and the variable is set accordingly. This setting is

116

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

useful for defining business constants, that are set
on process start and should be valid for the whole
lifetime of the process instance. For each reference
where onInstantiation is set, the RRS invocation
activity shown in listing 4 is placed in a sequence
that is executed on process instantiation.

• fresh: As fresh as possible - the value is retrieved
each time the variable is being accessed. This set-
ting is feasible for accessing frequently changing
values that are external to the process, e.g., sensor
data. In this setting the dereferenciation activity
needs to be placed directly before each activity that
accesses the value of the reference.

• periodic: A time value (e.g., 10 min) can be set
in the attribute period. This attribute describes
the maximum age a temporary reference value may
have, that is stored locally. After this time the value
is retrieved from the RRS and the temporary vari-
able is refreshed. Therefore, an <onAlarm> ele-
ment is placed in the global <eventHandlers>
element during transformation. This construction
accounts for periodic refresh, by repeatedly retriev-
ing the value from the RRS.

• external: An external event in the field of Web Ser-
vice orchestration is typically a message that is sent
to the process instance (or a signal that is valid for
all instances of one process model). By setting this
value for the referenceType, an update can be
triggered from the outside by sending an according
message to the process engine. The service from
which such a message is expected can be specified
in the attribute external. The transformation
step places an <onEvent> construct in the global
<eventHandlers> element, to account for this
setting.

This access type information for the refreshment of
the values is needed in the workflow model with the
following reason: In a SOA services should be loosely
coupled. That means services should not be aware of the
access type information which is relevant process logic
information. Therefore, the access type information
cannot be placed in the RRS service. Because if this
would be done the RRS service ought to be aware of all
access types of all workflows that are deployed. This
would result in a tight coupling.

The main characteristic of this realization approach
is that a modification of the execution engine is not re-
quired. This circumstance allows porting the presented
functionality to basically any standard-conform execu-
tion engine and compatibility issues between the various
existing engines are avoided. However a shortcoming of

this realization is that the transformation step introduces
new activities and variable definitions, compared to the
original process model. This impacts monitoring and
debugging instruments that will register the execution of
activities that are not contained in the original process
model.

5. Conclusion and Future Work

In this paper we introduced a method to allow data
passing between Web Services based on reference pass-
ing instead of value passing. This forms the basis for
implementing a new reference variable type in BPEL
which has the following advantages for the workflow:

First the workflow can pass the results from one Web
Service to another by using these pointers stored as EPR
in a reference variable. Thus the workflow engine is
disburdened of handling all data passing between the or-
chestrated Web Services which helps to reduce network
traffic and processing time.

Second the new reference variables allow completely
new data handling possibilities. Normally the variables
in a workflow are set explicitly, in contrast the value
of a reference variable is dereferenced on the time of
usage (or how specified see section 4.2). That means a
reference variable always provides the actual valid value
without explicitly updating it in the control flow. This is
very useful for context-aware workflows because in this
area data is often sensed by sensors and is updated very
often. Without using reference variables it is not easy
to keep the values in the workflow always up-to-date.
Furthermore the update activities pollute the workflow
model.

Future work is to research whether it is possible and
useful to integrate business rules into the RRS, as rule
engines usually need complex input data in order to eval-
uate the rule. Another subject of future research is if
visibility and scoping concepts are needed for references.
For example a reference could be visible on different lay-
ers: workflow instance level, workflow model level or a
company wide level (e.g., motivated by privacy reasons).
Furthermore security is an important issue, until now it is
handled very restrictive, only reading is allowed for non-
administrators in order to avoid conflicts in changing the
values of references. This has to be refined whenever
using our approach for scientific workflows.

Additionally, the RRS can realize more functional-
ity like a dynamic resource choice in order to facilitate
the usage of workflow technology in the scientific do-
main. At last the RRS can be part of a grid middleware
since scientific workflows often are executed in a grid
environment.

Another problem that has to be researched in future

117

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

work is the garbage collection of the references. There
is no garbage collector available yet but it would be
important to remove unused references in order to save
storage space. Furthermore the aliasing problem that
always occurs when using pointers has to be thought of,
because it is more complex than in normal programming
languages for following reasons: First, the usage of
references is distributed between different workflows
and RRS installations, not only direct references but also
indirect ones are possible. Second, the data accessed via
references have no simple data types but are complex
big data sets different references can point on. Because
of this reason the analysis of the references is difficult
at runtime and it is an unsolved problem how to detect
aliasing between different references.

Acknowledgments The work published in this ar-
ticle was partially funded by the DFG project Nexus
(SFB627), the COMPAS project1 under the EU 7th
Framework Programme Information and Communi-
cation Technologies Objective (FP7-215175) and the
DFG Cluster of Excellence Simulation Technology
(EXC310).

References

[1] External Variables in Apache Ode. http://ode.
apache.org/external-variables.html.

[2] A. Akram, D. Meredith, and R. Allan. Evaluation of
BPEL to Scientific Workflows. In CCGRID, pages 269–
274. IEEE Computer Society, 2006.

[3] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guzar, N. Kartha,
C. K. Liu, R. Khalaf, D. Knig, M. Marin, V. Mehta,
S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web
Services Business Process Execution Language Version
2.0. Committee specification, OASIS Web Services Busi-
ness Process Execution Language (WSBPEL) TC, Jan.
2007.

[4] Apache Ode Project. Apache Orchestration Director
Engine (ODE). http://ode.apache.org.

[5] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform
Resource Identifier (URI): Generic Syntax. Internet RFC
3986, 2005.

[6] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H.
Su, and K. Vahi. Characterization of Scientific Work-
flows. 3rd Workshop on Workflows in Support of Large-
Scale Science (WORKS08), 2008.

[7] F. Curbera, F. Leymann, T. Storey, D. Ferguson, and
S. Weerawarana. Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR,
2005.

[8] F. Daniel, F. Casati, V. D’Andrea, S. Strauch, D. Schumm,
F. Leymann, E. Mulo, U. Zdun, S. Dustdar, S. Sebahi,

1http://www.compas-ict.eu/

F. de Marchi, and M.-S. Hacid. Business Compliance
Governance in Service-Oriented Architectures. In Proc.
of AINA’09. IEEE Press, 2009.

[9] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
S. Patil, M.-H. Su, K. Vahi, and M. Livny. Pegasus:
Mapping Scientific Workflows onto the Grid. Across
Grids Conference, 2004.

[10] Eclipse BPEL Project. Eclipse BPEL Designer. http:
//www.eclipse.org/bpel/.

[11] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, Uni-
versity of California, 2000.

[12] M. Großmann, M. Bauer, N. Hönle, U.-P. Käppeler,
D. Nicklas, and T. Schwarz. Efficiently Managing Con-
text Information for Large-Scale Scenarios. In Proc. of
the Third IEEE Intl. Conf. on Pervasive Computing and
Communications, 2005.

[13] D. Habich, S. Richly, S. Preissler, M. Grasselt, W. Lehner,
and A. Maier. BPEL-DT - Data-aware Extension of
BPEL to Support Data-Intensive Service Applications. In
C. Pautasso and T. Gschwind, editors, WEWST, volume
313 of CEUR Workshop Proceedings. CEUR-WS.org,
2007.

[14] IBM. Information Integration for BPEL on WebSphere
Process Server. http://www.alphaworks.ibm.
com/tech/ii4bpel, 2005.

[15] F. Leymann and D. Roller. Production Workflow: Con-
cepts and Techniques. Prentice Hall PTR, 2000.

[16] P. Sarbanes and M. Oxley. Sarbanes- Oxley Act of 2002
(SOX), 2002.

[17] P. J. Plauger and J. Brodie. ANSI and Iso Standard C
Programmer’s Reference. Microsoft Programming Series,
1992.

[18] F. Rosenberg and S. Dustdar. Business Rules Integra-
tion in BPEL A Service-Oriented Apporach, In: Pro-
ceedings of the 7th International IEEE Conference on
E-Commerce Technology (CEC05). 2005.

[19] M. Vrhovnik, H. Schwarz, S. Radeschuetz, and
B. Mitschang. An Overview of SQL Support in Workflow
Products. In Proc. of the 24th International Conference
on Data Engineering (ICDE 2008), Cancún, México,
April 7-12, 2008, pages 1–8. IEEE, April 2008.

[20] W3C. Web Services Addressing 1.0 - Core,
W3C Recommendation. http://www.w3.org/TR/
ws-addr-core/, 2006.

[21] M. Wieland, O. Kopp, D. Nicklas, and F. Leymann. To-
wards Context-Aware Workflows. In B. Pernici and J. A.
Gulla, editors, CAiSE07 Proc. of the Workshops and Doc-
toral Consortium Vol.2. Tapir Acasemic Press, 2007.

[All links were last followed on March 5, 2009.]

118

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on July 30,2010 at 11:03:14 UTC from IEEE Xplore. Restrictions apply.

	cover-IEEE_References.pdf
	Foliennummer 1

