
¹ Institute for Parallel and Distributed Systems, University of Stuttgart, Germany
{firstname.lastname}@ipvs.uni-stuttgart.de

² Institute of Architecture of Application Systems, University of Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Policy4TOSCA: A Policy-Aware Cloud Service Provisioning
Approach to Enable Secure Cloud Computing

Tim Waizenegger¹, Matthias Wieland¹, Tobias Binz²,
Uwe Breitenbücher², Florian Haupt²,

Oliver Kopp¹,², Frank Leymann²,
Bernhard Mitschang¹, Alexander Nowak² and Sebastian Wagner²

© 2013 Springer-Verlag.
The original publication is available at
http://dx.doi.org/10.1007/978-3-642-41030-7_9
See also LNCS-Homepage:
http://www.springeronline.com/lncs

@inproceedings {INPROC-2013-43,
author = {Tim Waizenegger and Matthias Wieland and Tobias Binz and

Uwe Breitenb{\"u}cher and Florian Haupt and Oliver Kopp and
Frank Leymann and Bernhard Mitschang and Alexander Nowak
and Sebastian Wagner},

title = {{Policy4TOSCA}: A Policy-Aware Cloud Service Provisioning
Approach to Enable Secure Cloud Computing},

booktitle = {On the Move to Meaningful Internet Systems: OTM 2013
Conferences},

year = {2013},
publisher = {Springer Berlin Heidelberg},
isbn = {978-3-642-41029-1},
doi = {10.1007/978-3-642-41030-7_26}

}

:

Policy4TOSCA: A Policy-Aware Cloud Service
Provisioning Approach to Enable Secure Cloud

Computing

Tim Waizenegger1, Matthias Wieland1, Tobias Binz2, Uwe Breitenbücher2,
Florian Haupt2, Oliver Kopp1, Frank Leymann2, Bernhard Mitschang1,

Alexander Nowak2, and Sebastian Wagner2

1 Institute of Parallel and Distributed Systems
2 Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstr. 38

70569 Stuttgart, Germany
{firstname.lastname}@informatik.uni-stuttgart.de

Abstract. With the growing adoption of Cloud Computing, automated
deployment and provisioning systems for Cloud applications are becom-
ing more prevalent. They help to reduce the onboarding costs for new
customers as well as the financial impact of managing Cloud services by
automating these previously manual tasks. With the widespread use of
such systems, the adoption of a common standard for describing Cloud
applications will provide a crucial advantage by enabling reusable and
portable applications. TOSCA, a newly published standard by OASIS
with broad industry participation provides this opportunity. Besides the
technical requirements of running and managing applications in the cloud,
non-functional requirements, like cost, security, and environmental issues,
are of special importance when moving towards the automated provision-
ing and management of Cloud applications. In this paper we demonstrate
how non-functional requirements are defined in TOSCA using policies.
We propose a mechanism for automatic processing of these formal policy
definitions in a TOSCA runtime environment that we have developed
based on the proposed architecture of the TOSCA primer. In order to
evaluate our approach, we present prototypical implementations of secu-
rity policies for encrypting databases and for limiting the geographical
location of the Cloud servers. We demonstrate how our runtime environ-
ment is ensuring these policies and show how they affect the deployment
of the application.

Keywords: Cloud Computing, TOSCA, Cloud Service, Cloud Manage-
ment, Policy-Framework, Security, Green-IT, Sustainable Cloud Service

1 Introduction

In recent years, the steadily increasing use of IT in enterprises has lead to higher
management efforts concerning the whole application lifecycle. This becomes a

challenge for enterprises as the degree of complexity increases with each new
application and technology [5], whilst manual operator errors account for the
largest fraction of failures [17].

Cloud computing tackles these issues by enabling enterprises to automate
and outsource their IT, as well as its management [7]. Therefore, automated
deployment and provisioning systems for Cloud-based applications become more
and more important and prevalent. They help to reduce the onboarding costs
for new customers as well as the financial impact of managing Cloud services
by automating these previously manual tasks. With the widespread use of such
systems, the adoption of a common standard for describing C applications that
prevent vendor lock-in. Therefore, the Topology and Orchestration Specification
for Cloud Applications (TOSCA [14]) was published as a new Cloud standard by
OASIS in 2013 with broad industry participation.

TOSCA enables application developers to model and package their Cloud
applications including all management aspects in a portable, interoperable, and
standardized fashion. This allows automating the whole application lifecycle
management from provisioning, over maintenance, to termination. In addition,
applications can be deployed on various kinds of infrastructures, integrated and
combined with any XaaS offerings, and even migrated between different Cloud
providers. As non-functional requirements, like cost, security, and environmental
issues, are very important when providing, using and managing applications,
TOSCA allows specifying policies that express such non-functional requirements.
However, TOSCA lacks a detailed description of how to apply, design, and
implement policies.

In this paper, we tackle this issue and demonstrate how non-functional require-
ments can be defined in TOSCA as policies. We exemplarily use policies emerging
from the security domain. We further demonstrate how a prototypical TOSCA
runtime environment processes those policies. We propose two mechanisms for
implementing policy-specific logic: (i) Policy-aware Management Plans and (ii)
Policy-aware Management Operations. The presented approach enables Cloud
providers as well as application developers to specify, design, and implement
various kinds of policies.

The remainder of this paper is structured as follows: Section 2 describes
related work in the field of Cloud service deployment. Section 3 provides an
introduction into the TOSCA standard and briefly introduces our prototypical
TOSCA runtime implementation. Section 4 explains the formal definition of
policies in the TOSCA standard and introduces our example applications and
policies. Section 5 presents the automated processing of policies in TOSCA
following two approaches including a discussion. Finally, Section 6 concludes the
paper.

2 Related Work

NIST [10] defines Cloud computing as a model for enabling ubiquitous, convenient,
and on-demand network access to a shared pool of configurable computing

resources. An important aspect of Cloud Computing is the fast deployment of the
resources with minimal management effort. To achieve this goal, the resources
have to be formally described in a so-called Cloud service. A Cloud service is a
composite application that consists of different components. The setup of this
Cloud service is defined in an application model which defines the topology of the
service.

There are different approaches available that enable the description of com-
posite applications. Unger et al. [21] present an application model, which allows
describing dependency and deployment relations between components. Cafe [11]
is a system that supports the modeling and deployment of composite applications.
It is based on a formal definition of an application model. Leymann et al. [8]
broadens this model and adds labels to optimize the distribution of applications
between different Clouds.

Furthermore, there are systems available in the industry to describe appli-
cation models, like the Service Component Architecture (SCA) [1]. SCA allows
composing applications out of services by defining functional relations. Hence,
other relations, e.g., where a service is deployed, are not captured. In software
architecture, design, and development languages are used to describe the structure
of applications. There are different languages available, e.g., Acme architectural
description language [6] or the well-known Unified Modeling Language (UML) [16].
For instance, Machiraju [9] uses UML to model application structures in the
scope of topology discovery. However, they target mostly application architectures
and do not allow to model formal policy-aware service topologies, as it is needed
in this paper.

The Topology and Orchestration Specification for Cloud Applications (TOSCA)
is a standardization initiative by OASIS to define the topology and management
aspects of Cloud applications. This paper is using the concepts of TOSCA, be-
cause TOSCA allows describing the Cloud service topologies, the deployment
process of the services and the policies that have to be followed. Thus, all aspects
we need for Cloud service provisioning can be specified in TOSCA.

The focus of the previously published paper [22] proposing a policy-framework
for the deployment and management of Cloud services is the definition of a
taxonomy for policies and their aspects. Based on that a signature of a policy
can be defined. Furthermore, a high-level architecture of a policy-framework is
presented. The current paper describes a technical solution for the deployment
stage in the lifecycle aspect of a policy defined by Waizenegger et al. [22].
Furthermore, the taxonomy defined by Waizenegger et al. is used for the formal
definition of policies in this paper.

The goal of this paper is to introduce different aspects of policies and to
evaluate how to use policies for Cloud service deployment and management with
TOSCA. One use case for policy-aware Cloud service provisioning is security. A
good way to achieve security in Cloud Computing is certification [19]. Certification
is only possible if the Cloud service description is not changed after it was certified,
so different offerings for one Cloud service description may be available. An
offering defines which policies of the set of possible policies defined in the Cloud

service description should be enforced when the Cloud service is being deployed.
A Cloud service description can be certified, but customers may still select the
needed configuration based on choosing a proper offering. There are publications
that focus on specifying frameworks for implementing different methods to
provide security features, e.g., authentication across different providers or trust
management [20].

In an earlier publication [4], we describe a framework that enables the fully
automated provisioning of applications under compliance with policies that are
used to configure, guide, and extend the provisioning. However, this approach is
limited as polices can be attached only to nodes and relations, not to the overall
Topology Template. This restricts application developers from defining high-level
requirements such as all-encompassing data-location policies that apply to the
whole application. This limitation forces them to use fine-grained policies on
individual elements, which is not sufficient in many cases as discussed in Sect. 5.

The approach described by Nowak et al. [13] allows to build TOSCA service
descriptions based on a set of different service description patterns. However,
these service descriptions patterns are defined in a generic manner. Thus, using
policies as described in this work would enable the configuration of those service
descriptions regarding concrete use cases.

3 Introduction to TOSCA

P
ro

p
er

ti
es

 In
terfaces

Node
Template

Topology Template

type for

Node Type

Relationship
Template

Service Template

Node Types

Plans

type for

P
ro

p
er

ti
es

Relationship Type

Relationship Types

Fig. 1. TOSCA Service Template

A Cloud service in TOSCA is defined by two parts, first, the topology defining
the structure of the application and, second, the orchestration part which defines

the deployment and management of the applications components. In the TOSCA
jargon, an application model comprised of the above mentioned elements is called
a Service Template (see Fig. 1).

The topology is a graph of typed nodes and directed, typed edges called a
Topology Template. The types, which can be extended and derived, define, for
example, the properties and management operations of the respective nodes and
edges. The node type Apache Webserver, for example, has properties like “port”
or “version” and management operations like “start webserver” or “deploy an
application”.

Either management operations are shipped as part of the TOSCA application,
called Implementation Artifacts, or they are realized by an external service like
the Amazon EC2 Management Web Service, or a combination of both. Types
are instantiated in the topology by so-called Node Templates or Relationship
Templates, respectively. Templates define the actual properties and how the
components of the application are connected. The actual implementation of the
nodes is provided as a Deployment Artifact in the templates, for example, a ZIP
file containing the Apache Webserver or a WAR file embodying the Web service
node.

Figure 2 shows an example TOSCA application topology. The topology shows
a LAMP-based application (Linux, Apache, MySQL, and PHP) which runs on
two virtual machines hosted on Amazon EC2. The rounded rectangles depict node
templates, the vertical arrows between the node templates depict relationship
templates of type “hosted-on”. As we use Vino4TOSCA [3] to visualize application
topologies, all types are depicted as text enclosed by parentheses.

TOSCA addresses the automation and portability of the application’s man-
agement aspects through Management Plans. Management Plans are based on
existing workflow technology and orchestrate the type-specific management oper-
ations of the nodes and edges into higher-level application-specific management
operations [2]. A special Build Plan defines how to instantiate the service. Refer-
ing to our example topology in Fig. 2 the Build Plan first starts the two Ubuntu
virtual machine instances on Amazon EC2, then installs the Apache Webserver
and MySQL RDBMS, creates a new database, and in the last step imports
the database schema, installs the Java application, and configures the database
connectivity in the Java application. Another Management Plan for the backup
of the example application may create a dump of the database and archive this
file.

All the artifacts required for the application are packaged into a standardized
Cloud Service ARchive (CSAR) together with the actual TOSCA files, serialized
in XML. Following the TOSCA principles, the CSAR file is portable between
different TOSCA runtimes. The TOSCA runtime is responsible for running the
Implementation Artifacts and Management Plans, provide the artifacts contained
in the CSAR file, and hold the state of the application. A generic architecture
of an imperative TOSCA runtime is described by OASIS [15]. Here, imperative
means that plans provide the deployment and management logic, and not the
runtime itself.

On a high-level, the CSAR file is processed as follows: (1) The TOSCA defi-
nitions are validated and analyzed. (2) Then the Implementation Artifacts are
deployed by the TOSCA runtime into a suitable container for the respective
Implementation Artifacts. Our TOSCA runtime consits of a container for ex-
ecuting the plans (BPEL engine) as well as another container that hosts the
Implemenation Artifacts (Apache Tomcat). (3) Afterwards, the Management
Plans, which use the operations provided by the Implementation Artifacts, are
bound and deployed to a process engine. (4) Now it is possible to deploy and
manage the application provided by the CSAR file.

(AmazonEC2)

(VM)

(Ubuntu)

(ApacheWebServer)

(PHPApplication)

(AmazonEC2)

(VM)

(Ubuntu)

(MySQLRDBMS)

(MySQLDatabase)
(MySQLConnection)

(hosted on)

(hosted on)

(hosted on)

(hosted on) (hosted on)

(hosted on)

(hosted on)

(hosted on)

= Node (Type)

= Relationship

Fig. 2. Topology Template of a LAMP-based TOSCA Application

Similar to the other entities in the TOSCA standard, a policy has an abstract
definition; a Policy Type (see Listing 1.1). It is instantiated by defining a Policy
Template (see Listing 1.2). While the Policy Type describes the structure and
required parameters of a policy, the Policy Template is used to define a specific
policy instance that is annotated to an entity of the topology. A Service Template
then contains the topology comprised of Node and Relationship Templates as
well the Policy Templates that define which policies are in effect for which entities
of the topology. The generic type definitions for relationships, nodes and policies
are also contained in the Service Template since they are required as definitions
for the specified templates.

4 Policy Fundamentals and Formal Definitions

In order to make automatically deployable Cloud services secure and still keep
the application model flexible, we propose the use of policies that formalize non-

<PolicyType name="xs:NCName"
policyLanguage="xs:anyURI"?
abstract="yes|no"?
final="yes|no"?
targetNamespace="xs:anyURI"?>

<Tags > ?
<Tag name="xs:string" value="xs:string"/> +

</Tags >

<DerivedFrom typeRef="xs:QName"/> ?
<PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?

<AppliesTo >
<NodeTypeReference typeRef="xs:QName"/> +

</AppliesTo > ?

policy type specific content ?
</PolicyType >

Listing 1.1. Policy Type definition according to TOSCA

<PolicyTemplate id="xs:ID" name="xs:string"? type="xs:QName">
<Properties >

XML fragment
</Properties > ?

<PropertyConstraints >
<PropertyConstraint property="xs:string"

constraintType="xs:anyURI"> +
constraint ?

</PropertyConstraint >
</PropertyConstraints > ?

policy type specific content ?
</PolicyTemplate >

Listing 1.2. Policy Template definition according to TOSCA

functional security requirements. In this paper, we present two mechanisms for
processing policies during the deployment and management of Cloud services in
TOSCA and demonstrate how they affect these processes using example policies
and a Service Template. These example policies and application are introduced
at the end of this Section.

In the following, we present a taxonomy for classifying and describing Cloud
service policies and show how policies, application models and offerings interact.

Considering the reusability of application models and the involvement of
multiple parties like service providers, developers and Cloud providers, the
defined policies must follow a common standard that describes what their effect
is. This way the suitability of a certain Service Template can be evaluated, and
multiple implementations can be compared. Therefore, we propose a taxonomy
for the description of policies that was introduced by Waizenegger et al. [22]. In
the following, we outline this taxonomy and introduce the syntax and semantics
of formal policy definitions in TOSCA.

As an abstract definition, we see a Cloud service policy as a tuple of elements
that describe its behavior and effect. This tuple is given in Definition (1).

policy = 〈stage, layer, effect,property〉 (1)

We define our taxonomy based on the values of the elements of this tuple.
They allow the categorization and comparison of policies in different service
templates but are not meant to provide the means for automatically deriving the
policy implementation.

The first three elements identify any given policy while the property is used
to specify the behavior of the policy. Depending on the requirements of the
specific policy, this element can be a complex type, an atomic value or it can be
absent if the policy is sufficiently described by the other elements. The following
will give a brief description of these parameters.

Stage: Identifies the stage in the lifecycle of the Cloud service at which
the policy is being applied. The stages include solution building, instantiation,
runtime and termination. It should be noted that the policy might still affect
other stages than the one it was applied to.

Layer: The layer defines which part of the topology the policy applies to.
It allows for the definition of localized policies that apply to individual nodes
and relationships as well as global policies that apply to the entire topology. A
discussion of global and localized policies is given in Section 5.

Effect: This element gives a description of what the effect of the policy is i.e.
what purpose it has or what aspect of the service it modifies.

In the following, two example policies are given that we use as an applica-
tion for our taxnomomy and the policy processing methods presented in the
remainder of this paper. The first policy, called the Region Policy, determines
the geographical location of the data center in which the service is deployed.
This is necessary for services that are legally obligated to store and process
their data in a certain jurisdiction. Since this policy determines an aspect of
the underlying infrastructure, it is tightly coupled with the Cloud provider. For
any given (virtual) machine, it is a non-trivial problem to determine its physical
location with virtual means alone. Therefore, we use an API offered by the Cloud
provider to advise them to use a data center in a certain region.

With our second policy (Database Encryption Policy), we enable database
encryption since this is a frequent customer requirement. This policy does not
require interaction with the Cloud provider as it is a purely internal setting of
the database component used in the Service Template. It serves as an example
to show how policies affect the setup and configuration of service components.

Using the taxonomy introduced above, the values for the Region Policy are
as follows. Stage: instantiation, layer: virtual machines, effect: determine the
geographical location. The property now indicates the specific geographical region
chosen for the service, e.g., EU.

The Database Encryption policy is described as follows. Stage: instantiation,
layer: database node, effect: enable encypted datastore, property: AES256.

In order to apply a single, or multiple policies to a Service Template, an
offering as given by Definition (2) is constructed.

offering = 〈service template, {policies}〉 (2)

It is comprised of the Service Template itself as well as a list of policies that
govern the lifecycle of the service described by this offering. The process of
selecting an offering is given in Fig. 5.

The function instantiate represents the service deployment process and is
given in Definition (3).

instantiate(offering, service parameters) (3)

It creates an actual instance of the Service according to the given list of policies.
This process is implemented by the TOSCA runtime which interpretes the Service
Template and applies the policies contained in the offering. Additional service
parameters are passed to this function to represent the generic, non-policy related
information required by the deployment process. A detailed description of this
process in given by Section 5 and referring Fig. 6.

In order to provide an application for our policies and to demonstrate their
processing during service instatiation, we created a Service Template for the
Web-based learning management system Moodle. The topology of our Service
Template is given in Fig. 3. Moodle is a prime candidate for our two policies
introduced above since it deals with sensitive personal information that is often
required to be processed and stored in a certain jurisdiction. Database encryption
therefore is also often a requirement in Moodle installations.

(AmazonEC2)

(VM)

(Ubuntu)

(ApacheWebServer)

(MoodleWebApp)

(AmazonEC2)

(VM)

(Ubuntu)

(MySQLRDBMS)

(MoodleDB)
(connects to)

(PhpModule)
(depends on)

(hosted on)
= Node (Type)

= Relationship

Legend:

(hosted on)

(hosted on)

(hosted on)

(hosted on)

(hosted on)

(hosted on)

Fig. 3. Moodle Application Topology using Vino4TOSCA [3]

5 Methods for Policy-Aware Cloud Service Provisioning

As far as the TOSCA standard goes, only the annotation of policies in the Service
Template is standardized as described above. This leaves various aspects of policy
definition and processing up to interpretation and could lead to the emergence
of different incompatible implementations that are all standard compliant. We
therefore had to make certain assumptions and decided on a concept for processing
policies that is in line with the idea of the TOSCA standard.

Enabling and Configuring Policies through Offerings: Once a policy
is annotated in the Topology Template, we consider this policy supported by the
solution package. There still exists the need to enable or disable certain policies
as well as allowing their configuration by providing the property described in
Sect. 4. The TOSCA standard does not yet cover any of those requirements, so
two approaches to this issue are possible.

First, all policy properties could be defined in the annotation and then read
by the plans. This would require modifying the Service Template in order to
configure the policies to the customer’s specific needs, prohibiting the use of
generic application models and making it impossible to validate and digitally
sign Service Templates.

Therefore, we chose a second approach in which configuration parameters for
the annotated policies are given by an Offering. This is implemented by providing
different instances (Policy Templates) of a Policy Type that are each part of an
offering. This way it is possible to choose a specific set of policies to be active
from a single CSAR file without requiring to modify the Service Template. This
is especially useful in scenarios with high numbers of customers and policies that
require individual configuration.

Interfering Policies: Since it is the purpose of policies to modify the struc-
ture and behavior of the service, the possibility exists that certain policies interfere
with each other either by affecting the same aspect of the service, or by affecting
each other. Resolving such interferences automatically is a non-trivial task, es-
pecially since the formal definition of policies in TOSCA does not cover their
specific effect. Therefore, we perceive resolving policy interferences a duty of
the Cloud security officer who implements the policies in the Service Template.
She has to ensure that dependencies and interferences are taken into account
by providing policy implementations that are aware of these issues and behave
accordingly.

Global and Local Policies: As described in our taxonomy in Sect. 4, a
policy can be annotated at different layers in the service topology. It follows
that a policy can be effective for multiple nodes or relationships at the same
time. Therefore, these entities have to be made policy-aware by the Cloud service
security officer even if they are not directly annotated with a policy themselves.

5.1 Cloud Service Lifecycle

In the TOSCA primer [15] and the CloudCycle project [12] the Cloud service
lifecycle is described as shown in Fig. 4. The steps of this lifecycle are the building

Build Phase Run Phase

Manage
Cloud

Service

Terminate
Cloud

Service

Instantiate
Cloud

Service

Build
Solution

Cloud Service
Developer

1 2

4

5

3

Install
Solution
Package

Cloud Service
Provider

Fig. 4. Lifecycle of a cloud service, based on [12,15]

of a solution package that represents the Cloud service (step 1). This Solution
Package is installed in step 2. Afterwards the service can be instantiated multiple
times (step 3) by calling the Build Plan and is managed by management plans
later on (step 4). When the Cloud service is not needed anymore it is terminated
by a Termination Plan (step 5).

We enhanced the Cloud service lifecycle with new steps for enabling secure
Cloud Computing based on policies and offerings (see Fig. 5).

In the secure lifecycle a Cloud service developer bundles an existing service
into a solution package, i.e., a CSAR file (step 1) which is ready to be provisioned
in a Cloud environment. However, it is not yet secured. Therefore, a Cloud Service
Security Officer secures the application by annotating policies and implementing
their functionality through modified Plans or Implementation Artifacts. She
combines different selections of policies and their configuration into Offerings and
adds them to the policy annotation (step 2). A Cloud Service Provider installs
this solution package in his TOSCA runtime and presents the included offerings
to potential customers (step 3). This concludes the Build Phase of the Cloud
Service.

In step 4 the Cloud Service Customer selects a solution package and chooses
the desired offering (step 5) that determines the policies, which he requires.
After this Selection Phase, the Run Phase of the Cloud Service begins. Each

Run Phase Build Phase Selection Phase

Manage
Cloud

Service

Terminate
Cloud

Service

Instantiate
Cloud

Service

Build
Solution

Secure
Solution

Select
Solution
Package

Cloud Service
Developer

Cloud Service
Security Officer

Cloud Service
Consumer

1 2 3

7

8

6

Install
Solution
Package

Cloud Service
Provider

4

Select
Offering

5

Cloud Service
Consumer

Fig. 5. Security enhanced lifecycle of a cloud service

time a new instance of the Cloud Service is requested, a Cloud Service Instance
is instantiated (step 6) and managed (step 7) by the Cloud Service Provider.
When the Cloud Service is no longer needed, the Customer issues its termination
(step 8).

5.2 Method for Policy-Aware Cloud Service Provisioning

In this paper, we consider two approaches for implementing policies in an existing
Service Template, which can be used in combination or oy themselves. They are
performed by the Cloud Service Security Officer.

In the Plan-based approach (P-Approach) the Build, Management and Ter-
mination Plans are modified to execute additional operations, which implement
the security features required by the annotated policies. The Implementation
Artifact based approach (IA-Approach) on the other hand does not modify the
plans, but rather replaces the Implementation Artifacts with security-enabled
ones. These new Implementation Artifacts provide the same API as the previous
ones, but the operations they provide perform additional steps that implement
the required security features. Finally, the service topology is annotated with
policies, which can be fulfilled by the replaced Implementation Artifacts and/or
Plans. The concrete steps for the IA-Approach are described in Sect. 5.2 and for
the P-Approach in Sect. 5.2.

Moodle

TOSCA Runtime

Moodle
(Secured

CSAR)

Self-service Portal

Offering 1: Full Security

Offering 2: DB encryption
only

Offering 3: Plain
application (no sec.)

1. Install 2. Offer 3. Instantiate

TOSCA Runtime

Build Plan

mySQL

Implemen-
tation
Artifacts

Tomcat

Linux

Off. 1 Off. 2

Off. 3

Fig. 6. Automated Policy Processing with Plans and Implementation Artifacts

Figure 6 shows the process of a policy-based Cloud Service instantiation.
First, the Cloud service archive is installed in the TOSCA runtime, in our
example, the Moodle application (“1. Install”). This application archive supports
different offerings that determine which policies should be active and how they
are configured. In our example, these are the Region Policy and the Encrypted
Database Policy. The installed archive is then presented in the self-service portal

where the users can select their applications. Here different offerings can be
selected for the Moodle application (“2. Offer”). Figure 6 shows three example
offerings: Offering 1 provides Moodle with all security policies, offering 2 only
provides database encryption and offering 3 would be the cheapest, because no
security is requested.

Based on the selected offering the Build Plan receives different input parame-
ters for the application instantiation (“3. Instantiate”). Using these parameters
the selected offering is passed to the Build Plan as well as additional properties
required for service instantiation.

Then the Build Plan is executed and checks with an if-statement whether a
policy has to be enforced or not and processes the whole topology. Depending
on the selected offering, the concrete Implementation Artifacts will be used. In
Fig. 6 this is depicted by the arrows connecting the Build Plan activities and the
called Implementation Artifacts.

5.2.1 Implementation Artifact Based Policy Enforcement:
IA-Approach

In TOSCA, Implementation Artifacts realize service management operations
provided by Node Types. When introducing policies, the execution of those
management operations will be influenced. For example, depending on whether a
database is required to be encrypted or not, its deployment and configuration
has to be done differently. Therefore, we propose to support policies in TOSCA
through policy-aware Implementation Artifacts.

To realize our approach, existing Implementation Artifacts have to be extended
with additional policy enforcing implementations. The existing implementations
will remain, as we still need the capability to provide the basic management
operations. The extended Implementation Artifacts are thus comprised of two
alternative implementations for each service management operation: one that
is policy enforcing and one that is not. For each call of a service management
operation the Implementation Artifact has to check if any policy has to be enforced.
Depending on this check, the Implementation Artifact selects the appropriate
implementation to execute the called operation. To realize this concept we propose
a two-stage procedure which is given in Fig. 7.

First, a policy support check is performed during the CSAR deployment
(steps 1 and 2). For this first stage, we extend the TOSCA processing flow of
the container. When parsing a newly deployed TOSCA topology, the container
passes information about Node Templates and their associated policies to the
corresponding Implementation Artifacts. Each Implementation Artifact then
responds if it is capable of enforcing the policies associated with the respective
Node Template (step 3).

The second stage is executed by the Implementation Artifacts for each call of
the service management operations which is represented by step 4 in Fig. 7. Im-
plementation Artifacts are defined per Node Type; they are not bound to specific
Node Templates. Therefore, the Implementation Artifact asks the container for
the Node Template the current operation call is associated with, and if there are

Container Interface

Deployment
Implementation

Policy Management
Implementation

Other Container
Functionalities

Policy
Interface

Mngt.
Interface

Policy Checker

B
ase

Im
p

lem
en

tatio
n

Po
licy 1

Im

p
lem

en
tatio

n

Po
licy n

Fu

n
ctio

n
alities

Deploy CSAR 1

Evaluate
annotated
policies

2

Check if policy
is supported

3

Invoke
management
operation

4

Check Policies for
invoked service
instance

5

Select
Implementation

6

TOSCA Container

ImplementationArtifact

Runtime components

New components for policy enforcement

Call
Op. 1

Call
Op. 2

Fig. 7. Implementation Artifact Based Policy Enforcement

any policies registered for this Node Template under the current Offering (step 5).
Depending on the result, the corresponding implementation for the called service
management operation is selected and executed (step 6).

5.2.2 Plan-Based Policy Enforcement: P-Approach

A policy-aware Management Plan is an imperative way to enforce policies. For
each policy, the Plan triggers the appropriate steps. These steps are based on
the semantics of each policy. Therefore, there is no general rule for writing
enforcement instructions. For instance, when enforcing the Region Policy the
Plan will insert a request for the specified region into the message it sends to
the Cloud Provider. In the case of the Encrypted Database Policy, the Plan will
execute additional configuration steps for enabling encryption when setting up
the database.

The different steps of P-Approach are shown in Fig. 8. Step 1 is the deployment
of a CSAR to the TOSCA Container using the container interface. Then in step 2
the policies annotated in the topology are evaluated and are stored and made
available by the Policy Management Component. Step 3 is the presentation and
offering of the installed service with all its different offerings in the self-service
Portal - a web-portal for the customer to select the desired service and offering
for the individual security requirements. After the customer selected the service
with a concrete offering a message is generated and sent to the Build Plan (input
message). This message starts a new workflow instance that processes the build
plan (step 4).

The Build Plan then determines which policies should be enforced, it reads
the selected Offering from its input message and checks the Policy Management

Implementation to determine which policies this Offering includes and what their
specific configuration will be (step 5). Then, the Build Plan is executed and based
on the activated policies different branches in the Build Plan are executed (step
6).

For the Plan to determine which policies should be enforced, it reads the
selected Offering from its input message and checks the Policy Management
Implementation to determine which policies this Offering includes and what their
specific configuration has to be.

The Cloud security officer has to ensure that the plan conforms to the security
annotations given in the topology. One way to check is compliance checking of
processes as presented by Schleicher et al. [18].

Container Interface

Deployment
Implementation

Policy Management
Implementation

Other Container
Functionalities

Deploy CSAR 1

Evaluate
annotated
policies

2

Present and
select
offerings

3

Fetch additional
Properties and Policies
from service template

5
Policy-aware
transition

6

TOSCA Container

Runtime components

New components for policy enforcement

Self-service Portal
(service & offering)

Plan Input
Message
(selected

offering with
policies)

4 Start plan (service)

Off. 1 Off. 2

Off. 3

Fetch

Fig. 8. Plan Based Policy Enforcement

5.3 Discussion

In the previous sections, two different approaches were presented to implement
policies. These approaches allow the enforcement of policies in a TOSCA envi-
ronment. However, it should by carefully considered which approach is used for
realizing which policy.

Regarding reusability TOSCA allows NodeTemplates or NodeTypes to be re-
used in different topologies. Similarly, policies implemented with the IA-Approach
can be reused very easily as they are implemented locally on the IA level. However,
Build Plans are designed globally, i.e. with the whole topology in mind. Hence,
the P-Approach is service specific and can not be reused for different service
topology.

On the other hand, in more complex scenarios, it might be necessary to
monitor the whole service on a global level in order to determine if enforcement
actions have to be triggered. However, usually IAs are only aware of the local
state they are in. This limits their capability to make global decisions concerning
policy enforcement that depend on information from other IAs of the topology.
This global control can be achieved with the P-Approach. The management
plans can be designed to gather the information for policy enforcement from
all required components. Based on this information the plans can decide when
enforcement actions have to be performed. So the P-Approach is on an other
abstraction level and has global knowledge, whereas the IA-Approach works on a
detailed level considering propertied of one concrete component.

6 Conclusion

In this paper we first introduced TOSCA a new standard by OASIS for defining
Cloud services. In order to allow the definition of security policies for Cloud
services, we introduce in this paper a formal policy definition based on a taxonomy
defining the stage, layer, and effect of policies. Multiple policies are combined
into an offering together with a formal TOSCA Cloud service definition. The
customer can now chose such an offering that fits his requirements. We then
present a method for policy aware Cloud service provisioning consisting of a
security-enhanced Cloud service lifecycle and two approaches (P-Approach and
IA-Approach) for processing policies during the service deployment in a TOSCA
runtime. We concluded by giving a discussion about the differences between the
two approaches.

Acknowledgements

This work was partially funded by the BMWi Trusted Cloud project CloudCycle
(01MD11023) and the BMWi IT2Green project Migrate! (01ME11055).

References

1. Beisiegel, M., Booz, D., Colyer, A., Hildebrand, H., Marino, J., Tam, K.: SCA –
service component architecture (March 2007)

2. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using
TOSCA. IEEE Internet Computing 16(03), 80–85 (May 2012)

3. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA:
A visual notation for application topologies based on TOSCA. In: Cooperative
Information Systems. Springer (2012)

4. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wieland, M.: Policy-aware
provisioning of cloud applications. In: Conference on Emerging Security Information,
Systems and Technologies. IARIA (2013)

5. Garbani, J., Mendel, T., Radcliffe, E.: The writing on IT’s complexity wall (2010),
Forrester Research

6. Garlan, D., Monroe, R., Wile, D.: Acme: an architecture description interchange
language. In: Conference of the Centre for Advanced Studies on Collaborative
Research. IBM Press (1997)

7. Leymann, F.: Cloud computing. it – Information Technology 53(4) (2011)
8. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving applications

to the cloud: an approach based on application model enrichment. Int. J. Cooperative
Inf. Syst. 20(3), 307–356 (2011)

9. Machiraju, V., Dekhil, M., Wurster, K., Garg, P.K., Griss, M.L., Holland, J.:
Towards generic application auto-discovery. In: Hong, J.W.K., Weihmayer, R. (eds.)
Network Operations and Management Symposium. IEEE (2000)

10. Mell, P., Grance, T.: The NIST definition of cloud computing. Recommendations
of the National Institute of Standards and Technology Special Publication 800-145,
7 (2011)

11. Mietzner, R.: A method and implementation to define and provision variable
composite applications, and its usage in cloud computing. Ph.D. thesis, Universität
Stuttgart (2010)

12. Niehues, P., Kunz, T., Posiadlo, L.: Das CloudCycle-Ökosystem. Tech. rep., Cloud-
Cycle (2013)

13. Nowak, A., Binz, T., Fehling, C., Kopp, O., Leymann, F., Wagner, S.: Pattern-driven
green adaptation of process-based applications and their runtime infrastructure.
Computing pp. 463–487 (Feb 2012)

14. OASIS: OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0 Committee Specification 02 (2013), http://docs.oasis-open.
org/tosca/TOSCA/v1.0/cs02/TOSCA-v1.0-cs02.html

15. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0 (January 2013), http://docs.oasis-open.org/

tosca/tosca-primer/v1.0/tosca-primer-v1.0.html

16. Object Management Group: Unified modeling language 2.1.2 super-structure speci-
fication. Specification Version 2.1.2, Object Management Group (November 2007)

17. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail,
and what can be done about it? In: USENIX Symposium on Internet Technologies
and Systems (2003)

18. Schleicher, D., Leymann, F., Schneider, P., Schumm, D., Wolf, T.: An Approach to
Combine Data-Related and Control-Flow-Related Compliance Rules. In: Conference
on Service Oriented Computing & Applications. IEEE (Dec 2011)

19. Sunyaev, A., Schneider, S.: Cloud services certification. Commun. ACM 56(2),
33–36 (Feb 2013)

20. Takabi, H., Joshi, J., Ahn, G.J.: Securecloud: Towards a comprehensive security
framework for cloud computing environments. In: Computer Software and Applica-
tions Conference Workshops (2010)

21. Unger, T., Mietzner, R., Leymann, F.: Customer-defined service level agreements
for composite applications. Enterp. Inf. Syst. 3(3), 369–391 (Aug 2009)

22. Waizenegger, T., Wieland, M., Breitenbücher, U.: Towards a policy-framework
for provisioning and management of cloud services. In: Conference on Emerging
Security Information, Systems and Technologies. IARIA (2013)

All links were last followed on 2013-05-29.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs02/TOSCA-v1.0-cs02.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs02/TOSCA-v1.0-cs02.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html

