Vinothek — A Self-Service Portal for TOSCA

Uwe Breitenbiicher!, Tobias Binz!, Oliver Kopp'?, and Frank Leymann!
! Institute of Architecture of Application Systems, University of Stuttgart, Germany
2 Institute for Parallel and Distributed Systems, University of Stuttgart, Germany
lastname@informatik.uni-stuttgart.de

Abstract The TOSCA standard provides a means to describe Cloud
applications and their management in a portable way. TOSCA-based
applications can be deployed on various standard-compliant TOSCA
Runtimes. Vinothek is a Web-based Self-Service Portal that hides the
technical details of TOSCA Runtimes and provides end users a simple
graphical interface to provision Cloud applications on demand. This
demonstration shows how Vinothek supports automated provisioning of
applications and how it facilitates integrating TOSCA Runtimes.

Keywords: Cloud Applications; Self-Service Portal; TOSCA; Portability

1 Introduction

The Topology and Orchestration Specification for Cloud Applications (TOSCA [4])
is an OASIS standard for automating provisioning and management of Cloud-
based applications in a portable and interoperable way. TOSCA provides a generic
specification to model topologies that define the structure of Cloud applications.
Topologies and all required software artifacts such as virtual machine images
or scripts are stored in a package called Cloud Service Archive (CSAR). This
archive is also standardized and enables vendors to distribute their applications
to multiple Cloud providers based on a uniform and portable format.

To run TOSCA-based applications, a so called TOSCA Runtime is employed.
TOSCA Runtimes consume CSARs, install them, and provide functionalities to
provision and manage instances of the application. However, different TOSCA
Runtimes provide different management APIs as these are not standardized by
the specification: Some TOSCA Runtimes provide management functionalities
out of the box, others require so called Management Plans which are contained
in CSARs. Despite the goal of portability, TOSCA is currently lacking a common
API specification to provision new application instances.

This demonstration tackles this issue by presenting the Self-Service Portal
“Vinothek”, which allows end users to provision new application instances through
a simple, graphical user interface. Vinothek hides the technical details and
differences of TOSCA Runtimes and provides a single unified interface to provision
applications on various connected TOSCA Runtimes. Vinothek is based on Web
technologies such as HTML5 and JavaScript and requires no additional software
on client side. More details about TOSCA and TOSCA Runtimes are provided
by the TOSCA Specification [4], the TOSCA Primer [5], and Binz et al. [2].

2 User Interaction

Vinothek provides a simple and easy accessible Web-based end user interface
to provision new application instances on different TOSCA Runtimes. The
portal consists of two main screens: The Overview page shown in Fig. 1 lists
all applications installed in the TOSCA Runtimes connected to the Vinothek.
The shown applications can be provisioned by the user. Therefore, the user
selects one of the listed applications which leads to the Application Details page
shown in Fig. 2. This page presents all details about the selected application
and offers different options to configure the provisioning (shown on the bottom
left in Fig. 2). The user provisions a new application instance by clicking the
“Start Instance” button. If the provisioning requires additional user input such as
payment information, a popup appears that enables filling in this information.
After the provisioning is finished, the new application instance is opened in a new
browser window. Depending on the type of the application, the user interface, a
status page, or a remote desktop of the application instance is shown.

3 System Overview

The Vinothek is implemented following the Web-based client-server architecture
shown in Fig. 3. The Graphical User Interface (GUI) is based on Java Server
Pages and HTML5. It communicates via a RESTful API with the server that
delegates calls to the TOSCA Application Lifecycle Manager, which is currently
dealing with the provisioning of applications only. We plan to extend this com-
ponent in the future to support management and termination of application

/3 Vinothek

= € [} vinothekopentosca.org

Figure 1. Vinothek Overview page showing all available applications

/[Vinothek - Moodle *

€ & C [} vinothekopentosca.org/Moodle

_rf_nooyle

e
Default [=] Start Instance l

Figure 2. Vinothek Application Details page showing the selected Moodle application

GUI

REST API

TOSCA Application Lifecycle Manager

TOSCA Runtime Integration Layer
? *

|
OpenTOSCA]

Runtime Plugin [Other Plugin]

Figure 3. Vinothek System Overview

instances, too. Below this manager, the TOSCA Runtime Integration Layer pro-
vides mechanisms to plug-in TOSCA Runtimes. Plugins hook into the Vinothek
Lifecycle Manager by implementing a certain interface provided by the integration
layer and encapsulate all runtime-specific mechanisms to (i) provision a new
application instance and (ii) to retrieve available applications that are installed
as CSARs in the respective TOSCA Runtime. Thus, if a new application gets
installed in a TOSCA Runtime that is connected to the Vinothek by a plugin,
the new application is offered automatically by the Vinothek.

Depending on the API provided by the respective TOSCA Runtime, the
implementations of plugins differ from each other. We implemented one plugin for
the OpenTOSCA Runtime [1], which employs management plans implemented
as workflows to provision and manage applications. The OpenTOSCA plugin
connects, therefore, to (i) OpenTOSCA’s workflow engine to provision new

application instances and to (ii) the RESTful OpenTOSCA Management API
for retrieving installed applications.

As the TOSCA Specification does not define how to deal with self-service
information, we extended the structure of CSARs by adding a “Meta-SelfService”
folder. This folder contains a uniform XML-based application description in-
cluding marketing information such as text, icons, and screenshots as well as a
technical Deployment Descriptor. This Deployment Descriptor defines technical
information required to provision the application on the respective runtime, i.e.,
required input parameters and runtime-specific information. When the provi-
sioning of a new application instance is triggered, the Vinothek first requests
all specified input parameters from the user via a popup. This information is
passed to the plugin that uses these parameters and the technical information
contained in the runtime-specific part of the Deployment Descriptor to start the
provisioning of the application in the respective TOSCA Runtime. For example,
the Deployment Descriptor of the school learning software “Moodle”® requires
the initial username and password for the admin from the user. In addition, the
Deployment Descriptor contains information required by OpenTOSCA to run
the plans, e. g., it specifies that both Moodle database and business logic shall
run in one single virtual machine. The “Meta-SelfService” folder itself may be
created manually or by using the TOSCA modeling tool “Winery” [3].

4 Conclusion and Outlook

We presented the Self-Service Portal “Vinothek”, which provides a simple graphi-
cal user interface for the provisioning of TOSCA-based applications. The tool also
provides a means to integrate different TOSCA Runtimes transparently to end
users and hides the technical details. A video of the demonstration is available at
http://demo.opentosca.org. In the future, we plan to extend the Vinothek to
support management functionalities and policies.

Acknowledgements This work was partially funded by the BMWi project
CloudCycle (01MD11023). We thank Kalman Képes for his work on the prototype.

References

1. Bingz, T., et al.: OpenTOSCA — A Runtime for TOSCA-based Cloud Applications.
In: ICSOC. Springer (2013)

2. Binz, T., et al.: TOSCA: Portable Automated Deployment and Management of
Cloud Applications, pp. 527-549. Advanced Web Services, Springer (Januar 2014)

3. Kopp, O., et al.: Winery — Modeling Tool for TOSCA-based Cloud Applications. In:
ICSOC. Springer (2013)

4. OASIS: OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0 Committee Specification 01 (2013)

5. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)
Primer Version 1.0 (January 2013)

3 http://www.moodle.org

http://demo.opentosca.org
http://www.moodle.org

