
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{haupt, karastoyanova, leymann, vukojevic}@iaas.uni-stuttgart.de

Service Composition for REST

Florian Haupt, Markus Fischer, Dimka Karastoyanova,
Frank Leymann, Karolina Vukojevic-Haupt

© 2014 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{INPROC-2014-33,
 author = {Florian Haupt, Markus Fischer, Dimka Karastoyanova,
 Frank Leymann, Karolina Vukojevic-Haupt},
 title = {Service Composition for REST},
 booktitle = {2014 IEEE 18th International Enterprise Distributed Object
 Computing Conference, EDOC 2014},
 year = {2014},
 pages = {110-119},
 publisher = {IEEE},
 doi = {10.1109/EDOC.2014.24}
}

:

Institute of Architecture of Application Systems

Service Composition for REST

Florian Haupt, Markus Fischer, Dimka Karastoyanova, Frank Leymann, Karolina Vukojevic-Haupt

Institute of Architecture of Application Systems

University of Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Abstract—One of the key strengths of service oriented

architectures, the concept of service composition to reuse and

combine existing services in order to achieve new and superior

functionality, promises similar advantages when applied to

resources oriented architectures. The challenge in this context is

how to realize service composition in compliance with the

constraints defined by the REST architectural style and how to

realize it in a way that it can be integrated to and benefit from

existing service composition solutions. Existing approaches to

REST service composition are mostly bound to the HTTP

protocol and often lack a systematic methodology and a mature

and standards based realization approach. In our work, we

follow a comprehensible methodology by deriving the key

requirements for REST service composition directly from the

REST constraints and then mapping these requirements to a

standard compliant extension of the BPEL composition language.

We performed a general requirements analysis for REST service

composition, defined a meta model for a corresponding BPEL

extension, realized this extension prototypically and validated it

based on a real world use case from the eScience domain. Our

work provides a general methodology to enable REST service

composition as well as a realization approach that enables the

combined composition of WSDL and REST services in a mature

and robust way.

Keywords—REST; service composition; BPEL; eScience;

simulation workflow

I. INTRODUCTION

The Service Oriented Computing (SOC) paradigm
introduces the concept of services as encapsulated and loosely
coupled components that are the basic building blocks of
complex software systems [1]. A service can be characterized
as some functionality offered at a certain network address. One
core concept of service oriented computing is to reuse and
combine existing services to realize new and possibly more
complex functionality. This approach is well known as service
composition. There exist several kinds of service composition
approaches, from automatically created compositions based on
semantic matchmaking [2] over declarative compositions [3] to
process model based compositions [4]. One of the most
widespread service compositions languages is the Web Services
Business Process Execution Language (BPEL) [5].

Besides the success of service oriented architectures, a new
paradigm for building distributed systems is gaining more and
more relevance. Representational State Transfer (REST) is an
architectural style originally defined to document the design

rationale behind the architecture of the World Wide Web
(WWW) [6]. The REST architectural style is realized by the
WWW, a distributed system of interconnected documents that
are meant to be consumed by humans. For quite some time,
there is a noticeable movement towards applying the REST
principles also to the design and realization of services, i.e. to
build distributed systems of interconnected resources that are
meant to be accessed by software rather than by humans.
Realizing services based on the basic techniques of the WWW,
mainly the HTTP protocol, seems to attract service designers
and developers due to its perceived simplicity, especially when
compared to service oriented architectures implemented using
the WS* standards [7]. In addition to that, the rise of the cloud
computing paradigm has significantly increased the need for a
simple but powerful means for remote resource access. The
NIST definition of Cloud Computing [8] explicitly states, that
cloud services have to enable “broad network access”, i.e. they
have to provide an interoperable access mechanism suitable for
heterogeneous client types. In practice, this requirement is
often realized by providing REST interfaces.

Considering the ongoing dissemination of REST services,
the question arises if and how the concept of service
composition can be adapted to resource oriented architectures
based on the REST architectural style. Having a look at
literature, there is apparently a true need for REST service
composition. In the field of automated cloud service
provisioning, there exist several approaches that define the
provisioning logic of complex service topologies using process
models, i.e. service compositions [9] [10]. As the provisioning
of such service topologies inherently requires interacting with
the interfaces of cloud services, the provisioning process
consequently needs to be able to interact with REST services.
Another domain that successfully applies service composition
concepts is the field of eScience. The execution of scientific
experiments can be simplified and automated by modeling an
experiment as service composition and executing it based on
workflow technology [11] [12]. In addition to the use of
service compositions, REST services are also disseminated in
the eScience domain [13] [14]. Consequently, in the eScience
domain there is a need for REST service composition.

Service oriented architectures and resources oriented
architectures are based on different paradigms. Adapting the
concept of service composition defined in SOA to REST based
systems therefore requires a thoroughly analysis. In this paper
we contribute (1) a detailed analysis of the REST architectural
style with respect to service composition. Based on that, (2) a

meta model for REST service composition as an extension of
the BPEL composition language is designed. We also
contribute (3) a prototypical implementation of this extension
and (4) validate it with a real world use case from the eScience
domain.

The rest of the paper is organized as follows. Section II
discusses the REST principles with respect to service
composition and infers a set of corresponding requirements. In
section III, the BPEL composition language is introduced and
already existing solutions for REST service compositions with
BPEL are shortly discussed. Section IV presents our meta
model for REST service composition with BPEL together with
the methodology it was designed with. The realization of the
BPEL extension and the validation are shown in section Fig. 3.
The paper finishes with an overview about relevant related
work in section VI and conclusion and outlook in section VII.

II. SERVICE COMPOSITION FOR REST

REST is an architectural style for distributed hypermedia
systems [6]; its definition is based on a set of constraints. Any
architecture compliant with these constraints can be called a
REST (or RESTful) architecture. In this section, we will give
an overview about REST, focusing mainly on the aspects
relevant in the context of service composition. In addition, we
will discuss for each REST constraint, which requirements
relevant for REST service composition can be deduced from it.

Strictly speaking, the term “service composition” cannot be
applied to REST architectures. Whereas the main entities in
service oriented architectures are services providing a set of
operations, in REST architectures the concept of a service does
not exist at all. Instead of services, the main entities in REST
are resources. The interface to interact with such resources, i.e.
the operations available, is the same for all resources and
predefined by the so called uniform interface. Whereas services
differ in terms of the interface, i.e. the operations they offer,
resources differ in terms of the resource representations they
provide. Resources can, nevertheless, also be interpreted as
services. Following this interpretation, REST services all
provide the same basic operations (the uniform interface), but
each “service” may provide different variants of these
operations, namely differing in request and response
parameters. For reasons of comprehensibility, in the following
we will still use the term “REST service composition”,
although we are aware, that the terms “resource composition”
or “resource interaction composition” are more exact.

As starting point for the following overview about the
REST principles we choose the term the acronym REST is
based on, “Representational State Transfer”. Although this
does not cover all aspects relevant in REST, it combines two
main aspects, the concept of resource representations
(“Representational”) and the concept of state transfer.

Understanding the concept of representations requires to
first introducing the concept of resource orientation. As already
discussed before, in REST architectures all interaction is about
accessing resources. The interaction with a resource, i.e.
reading or writing a resource, is abstracted by the concept of
representations. Each resource is available in one or more
representations. When a resource is read, not the resource itself

but a representation of the resource is retrieved. Just the same,
when a resource is created or updated, a representation of the
resource is given. The concept of resource representations can
be easily illustrated using a simple example from the World
Wide Web (WWW). An article of a blog is a resource available
in the WWW. However, when accessing this resource, i.e.
when opening the article in a web browser, not the resource
itself but a HTML representation of this resource is shown.
This decouples clients accessing the resources from any details
how and in which format the resource is internally stored at the
server. The representation(s) of a resource can be adjusted to
the needs of the clients without changing the internal resource
format.

The concept of resource representations introduces the need
of content negotiation. As mentioned before, a resource can be
provided in multiple representations. Similarly, a client
accessing a resource may be able to handle some
representations while it cannot handle others. Therefore, when
a client accesses a resource, a matching representation
supported by both, client and server, has to be returned. The
process of determining such a matching representation is called
content negotiation. There exist two types of content
negotiation, client driven content negotiation and server driven
content negotiation. In server driven content negotiation, the
client sends a request to the server and also provides, which
representations it will accept as response. The server is then
responsible to select an appropriate representation to return, if
available. In client driven content negotiation, the client sends a
request to the server. The server then responds with a list of all
available representations. In this case, the client is responsible
to select an appropriate representation and can then retrieve it
from the server with a second request.

To support the concept of resource representations, a REST
service composition has to support content negotiation
(requirement 1). More precisely, it has to be able to explicitly
specify the type of representations and it has to provide means
to handle different representations.

In REST, access to resources is enabled by the uniform
interface, a well-defined interface introducing interaction
transparency. Another constraint important in the context of
resource access is the concept of uniquely identifiable
resources. The combination of these two concepts, the uniform
interface and unique identifiers, enable caching, which is one
of the main strengths of REST and one of the main reasons for
the scalability of REST compliant system.

In order to fulfill the constraints of the uniform interface
and unique identifiers, a REST service composition has to
support both, the uniform interface (requirement 2) as well as
addressing resources by their unique identifier (requirement 3).

As an additional step towards loose coupling between client
and server, the REST architectural style demands resource
representations to follow the Hypertext as the Engine of
Application State (HATEOAS) constraint. This constraint
implies that the representation of a resource contains metadata
describing possible interactions with the resource as well as its
relations to other resources. These relations are typically
provided as links. Following the HATEOAS constraint, all
interaction with a resource is driven by the resource

representation and not by any other “out of bound”
mechanisms.

There can be three requirements inferred from the
HATEOAS constraint. As interaction parameters (e.g. query
parameters) and also the set of available resources are
determined at runtime, a REST service composition has to
enable dynamic partners (requirement 4) and dynamic
parameters (requirement 5). In addition, when accessing a
resource, not only its data but also the associated metadata has
to be accessible (requirement 6).

The state transfer constraint denotes, that a REST
compliant server is not allowed to keep any application state.
All interaction related data, i.e. the state of an interaction, has
to be contained in each message sent to a server. As a
consequence, the state of an interaction (or session) has to be
managed by the client rather than the server. This constraint
also contributes to the scalability of REST systems as it avoids
server affinity and eases horizontal scaling.

The state transfer constraint provides the last requirement
for REST service composition. A REST service composition
has to provide means to manage the state of an interaction over
several single interactions (requirement 7).

The set of constraints introduced and discussed so far is not
complete. Another aspect of REST is a layered client-server
based architecture. However, this constraint does not add any
requirements to service composition. The code on demand
constraint is defined as optional and not considered here.

III. THE BPEL COMPOSITION LANGUAGE

Instead of defining a new composition language for REST
services from scratch, we aim at reusing an existing, mature
and standardized composition language. This approach offers
several advantages. We can keep and furthermore use existing
language features and we can benefit from existing tooling, for
example for modeling, execution, monitoring or auditing. To
summarize, the extension of an existing language rather than
defining a new one promises to “obtain much with little effort”.

A. The BPEL composition language

The Web Services Business Process Execution Language
(BPEL) is the dominating service composition language in the
field of web services. It has been standardized by the OASIS
consortium1 and is widely adopted in research as well in
industry [15] [16]. The BPEL standard defines XML based
syntax as well as the corresponding execution semantics for
process based web service composition.

BPEL provides means to define complex interactions with
multiple web services, i.e. to call web service methods as well
as to receive web service calls. A BPEL process in turn is
offered as a web service, this is referred to as a recursive
composition model. BPEL combines two different process
modeling paradigms. On the one hand, it supports a block
oriented modeling approach combining process activities and
control flow structures in an interlaced way. On the other hand,
it also allows modeling a process following a graph based

1 https://www.oasis-open.org/

approach, i.e. to connect process activities with control flow
connectors.

Data handling inside a process is supported by variables
and the assign activity. The type system of BPEL is by default
based on XML schema and variable definitions consequently
refer to XML schema types. The assign activity provides one
or more data manipulation instructions that prescribe data
transfer between variables. Accessing and identifying the
relevant parts of variables is realized using XPath expressions.

BPEL offers several communication activity types for
exchanging messages. The receive and the pick activity
represent the reception of an incoming message by a BPEL
process. A receive activity accepts exactly one message type
whereas the pick activity can handle multiple message types. A
pick activity can be also described as a polymorphic receive.
For the purpose of sending a message, BPEL offers the invoke
activity and the reply activity. The reply activity is used to send
a message in response to a request message received by a
previous receive activity. The invoke activity models calling a
web service, i.e. sending a request message and afterwards
receiving a response message.

In addition to the communication activities introduced
before, BPEL offers further communication related modeling
constructs. MessageExchanges connect a receive activity of a
process with the corresponding reply activity; they manage
request and response message pairs inside a process.
PartnerLinks describe the interaction between a process and a
web service in terms of which interfaces they provide each
other. This is especially important in asynchronous interaction
scenarios where both interacting partners call each other. In
such scenarios both partners, the process as well as the web
service, offer an interface the other partner depends on.
CorrelationSets are used to unambiguously assign incoming
messages to a process instance. A correlationSet basically
prescribes which part of an incoming message has to be
matched with which part of a variable of a process instance.

Besides communication activities, BPEL offers several so
called structured activities describing the control flow structure
of a process. Each of these activities contains one or more child
activities and prescribes in which order they have to be
executed. The sequence activity models the sequential
processing of its child activities. The if activity is used to
describe conditional behavior, the execution of its child
activities is bound to conditions. The while and the repeatUntil
activities describe repetitive execution, i.e. loops. Similarly to
the while and the repeatUntil activities, the forEach activity
can be used to iteratively execute its child activities.
Additionally, it also supports the parallel execution of its child
activities. A common use case for the forEach activity is the
processing of a set of data, e.g. an array of data. Whereas the
structured activities discussed so far follow the block oriented
modeling paradigm, the flow activity introduces a graph based
modeling approach. A flow activity contains a set of child
activities together with a set of links. Each link represents
conditional control flow between two activities, it defines one
source activity, one target activity and an optional transition
condition. A flow activity is typically used to model parallel
control flow structures.

BPEL provides further language elements targeting error
handling and robustness. Scopes in general define a common
context for the elements they contain. Variables defined inside
a scope are bound to this scope, in terms of visibility as well as
existence. Scopes can also have so called handlers attached.
Event handlers are used to handle events, i.e. they model
control flow that is outside of the regular control flow of the
process. Fault handlers prescribe how to react to faults that
may occur inside a scope. Whenever a fault occurs, it is
forwarded to the surrounding scope. When a matching fault
handler is defined, it is executed; otherwise, the fault is
propagated to the next surrounding scope. Through the
definition of compensation handlers BPEL supports long
running business transactions [17]. Before the fault handler of a
scope is executed, the compensation handlers of all contained
activities are executed in their reverse execution order. This
allows performing domain specific undo or cleanup steps in
case of a fault.

BPEL is thoroughly designed to be extensible. A BPEL
XML document can be freely extended by any XML element
outside of the BPEL namespace. Such extensions can be
declared as optional or as mandatory, i.e. it can be declared if a
BPEL engine can ignore such extension elements or if it has to
support them. Besides this very general extensibility, there are
two more specific extension capabilities explicitly included in
the BPEL language. The assign activity can contain so called
extensionAssignOperation elements providing additional data
handling functionality. In addition, BPEL also defines an
extensionActivity. This activity acts as a placeholder for custom
activity types. If declared as optional, a BPEL engine may
ignore these activities, otherwise it has to support them, i.e. it
has to be able to execute them.

B. Existing Approaches for REST Composition with BPEL

Although BPEL is tightly coupled to WSDL based web
services, typically realized as SOAP services, it is in parts
possible to use BPEL to interact with REST services. In the
following we will give a short overview about the most
relevant approaches and show, why they do not provide an
appropriate solution for REST service composition.

BPEL relies on the Web Services Description Language
(WSDL) 1.1 as description language for service interfaces [18].
WSDL 1.1 allows defining a HTTP binding, i.e. to map the
operations of a web service to HTTP calls. Such a binding is
static; the addresses of all resources have to be known in
advance. There is only very limited support for content
negotiation, and the mapping of a resource providing several
methods to a corresponding WSDL descriptions results in an
excessive set of bindings and ports to be defined.

The Apache Orchestration Director Engine (ODE)2, an
open source BPEL engine, defines a custom extension for
HTTP binding in WSDL 1.1. This extension supports enhanced
manipulation of resource URIs at runtime, but the host has to
be furthermore known in advance. The mapping of HTTP
interactions to WSDL operations results in cleaner WSDL

2 http://ode.apache.org/

descriptions. There is however no improvement regarding the
limited support for content negotiation.

The successor of WSDL 1.1, the WSDL 2.0 standard [19],
provides an enhanced HTTP binding that in parts overlaps with
the WSDL 1.1 extensions defined by the ODE project. In
addition, it provides basic support for content negotiation
through the definition of input and output serialization. The
main drawback in context of BPEL is that the BPEL language
is closely bound to WSDL 1.1 and does not support WSDL 2.0
at all.

A commonality of all approaches discussed so far is, that
all aspects related to REST are not visible in the composition
language itself. The enabling of REST service composition is
realized as a kind of deployment configuration or service
binding. In contrast to that, our approach for REST service
composition with BPEL explicitly defines REST interaction
capabilities as part of the composition language.

IV. A BPEL EXTENSION FOR REST SERVICE COMPOSITION

In this section we present an extension to the BPEL
composition language that enables the combined composition
of WSDL based web services and HTTP based REST services.
A main feature of the extension is standard compatibility, i.e.
the resulting BPEL processes are still standard compliant
BPEL processes. To achieve this goal, we build on extension
capabilities already defined in the BPEL language, namely
extension activities. In the following, we will introduce the
meta model of the proposed extension activities. After that, we
will show how these extensions fulfill the general requirements
to RESTful compositions previously identified in section II.

A. The Meta Model

In order to enable the composition of REST services, we
extend the BPEL composition language with a set of extension
activities. For each of the main HTTP methods we define a
corresponding REST extension activity. The meta model of
these extension activities is shown in Fig. 1 as UML class
diagram. Classes already defined by BPEL are colored grey;
everything else is part of the newly defined meta model for
REST service composition.

Each REST extension activity inherits from the
ExtensionActivity class. This class contains the standard
attributes and elements the BPEL standard defines for each
activity. For reasons of comprehensibility, the meta model
depicted in Fig. 1 only shows the optional name attribute.

The class RESTActivity is the base class for all REST
extension activities; it contains attributes and elements
common to each REST extension activity. The host and path
attributes together identify the resource to interact with. These
attributes can be provided as literals, i.e. the host or the relative
path of a URI is predefined by an activity. Instead of
predefining the URIs of resources, the more common way of
interacting with REST services is driven by links (as defined
by the HATEOAS constraint). When a representation of a
resource is accessed, this representation can contain links
identifying related resources. Theses links are then used to
access other resources, i.e. the URI of a resource is in general

only known at runtime. In the context of REST service
composition that means that the target URI of a REST
extension activity is in general not known in advance. It
typically depends on another REST service interaction
performed some time before in the same composition.
Therefore, as shown in the meta model in Fig. 1, each REST
extension activity can also refer to BPEL variables containing
the URI of the resource to interact with.

<variable name=”host” type=”string” />

<variable name=”path” type=”string” />

…

<GET host=”localhost:8080”

 path=”/api_root/”>

 …

</GET>

…

<!-- read response, fetch next link -->

<!-- write link data to variables -->

…

<GET host=”$host$” path=”$path$”>

 …

</GET>

Listing 1: Resource identification example

A simple example of both approaches for resource
identification is given in Listing 1. At first, two string variables
are defined. The first GET activity accesses a resource with a
predefined URI, the host as well as the relative path are given
as literals. After the first GET activity is finished, the retrieved
data can be read and, depending on the domain logic, a suitable
link contained in the data can be selected. In our example, we
assume that the selected link data is then written to the
previously defined variables host and path. This variables are
then be used by the second GET activity to identify its target
resource. As shown in Listing 1, the second GET activity does
not contain any literals but instead references BPEL variables,

indicated by the surrounding ‘$’ characters.

Another commonality between all REST activities is
defined by the Context class. A context defines data and
configuration that applies to a set of requests, typically as part
of an interaction with multiple resources of the same REST
service. Typical parameters of such interactions are abstracted
from the underlying HTTP header fields and modeled as
context attributes (closeConnection, username, password,
cacheControl). In addition to this, a context also allows to
define values for arbitrary header fields. Another important
aspect of a context is that it represents the state of an
interaction; it acts as a container for state data like for example
HTTP cookies. REST extension activities that refer to the same
context share the same interaction state. As shown in the meta
model in Fig. 1, the context is modeled as BPEL variable. The
structure of such a context variable is well defined by a given
XML schema document. Consequently, it can be created and
manipulated using standard BPEL constructs.

A simple example for the usage of a context is given in
Listing 2. At first, a variable named ctx of the predefined type
rest:context is declared and initialized. It defines username and
password to be used if an interaction requires authentication
and it also defines that the underlying HTTP connection should
be kept open. The GET activity then references the defined
context using the ref attribute. The following POST activity
references the same context, i.e. it is executed using the same
configuration and also using cookie data possibly written
during the first GET activity. In addition to referencing the
context ctx, the second activity extends the context by defining
the value ODE-v2 for the HTTP header field User-Agent. It is
in general possible to extend or adapt a referenced context on a
per request base. A context attribute defined inside an activity
always supersedes the same attribute defined by the referenced
context variable.

Fig. 1. A Meta Model for REST Extension Activities

+name

ExtensionActivity

GET

InteractionWithResponseEntity

+host
+path

RESTActivity

InteractionWithRequestEntity

PUT POSTDELETE

+name

Variable

+MIME-Type

EntityMapping

+closeConnection
+username
+password
+cacheControl

Context

+name
+value

Header

+statusCode
+faultName

FaultMapping

+MIME-Type
+priority

EntityAccepted

+name
+priority

LanguageAccepted

<variable name=”ctx” type=”rest:context”>

 <literal>

 <context>

 <closeConnection>false</closeConnection>

 <username>JohnDoe</username>

 <password>1337</password>

 </context>

 </literal>

</variable>

…

<GET host=”…” path=”…”>

 <context ref=”ctx” />

 …

</GET>

…

<POST host=”…” path=”…”>

 <context ref=”ctx”>

 <header name=”User-Agent”>ODE-v2</header>

 </context>

 …

</POST>

Listing 2: Context usage example

All REST extension activities shown in Fig. 1 are able to
return a response entity. To enable further processing of the
result of request, the response entity is saved to a BPEL
variable. According to the concept of resource representations
and content negotiation, a request can possibly return different
representations of the same resource. Consequently, for each
possible representation a separate target variable of the
corresponding data type is needed. In our meta model, this is
supported by the EntityMapping class. A REST extension
activity can refer multiple of those mappings. Each mapping
defines the MIME type it applies to and also references a
BPEL variable. The referenced variable has to be of a data type
compatible with the given MIME type. In addition to the
response entity, each request also returns HTTP header fields.
These header fields can optionally be written to a BPEL
variable also defined by the EntityMapping class. This enables
to arbitrarily process any header fields if needed. If a request to
a resource results in an error, in HTTP this is signaled by a
corresponding status code. To be able to handle such faults in
BPEL, for each request a FaultMapping can be defined. This
mapping defines which BPEL fault to throw for which status
code. These BPEL faults can then be handled using standard
BPEL fault handlers.

A simple example for response handling is shown in
Listing 3. At first, two variables are defined. The variable pic is
of the type base64Binary, it is supposed to contain a picture in
base64 encoding. The variable desc is of the type string and

supposed to contain the corresponding description text of the
picture stored in the variable pic. The GET activity then
contains two different entity mappings. The first mapping
defines that when the request returns an entity with the MIME
type application/octet-stream, the entity data has to be stored in
the variable pic. However, when the request returns an entity
with the MIME type text/plain, the entity data has to be stored
in the variable desc.

<variable name=”pic” type=”base64Binary” />

<variable name=”desc” type=”string” />

<GET host=”…” path=”…”>

 <response>

 <acceptEntityMapping

 type=”application/octet-stream”

 variable=”picData” />

 <acceptEntityMapping

 type=”text/plain”

 variable=”picName” />

 </response>

 …

</GET>

Listing 3: Response mapping example

The concept of resource representations and content
negotiation does not only affect the handling of responses but
also the way requests are handled. In contrast to response entity
handling discussed so far, request entity handling only applies
to some activities, namely PUT and POST. These are the only
activities that may contain a request entity; they both inherit
from the InteractionWithRequestEntity class. Similarly to
response entity mapping, the request entities may also be of
different MIME types and therefore stored in different
variables. In our meta model this is again modeled by the
EntityMapping class. The only difference is that the mapping
defines which variable contains the entity representation, in
contrast to response handling, where the mapping defines
where to store the entity representation. As already introduced
in section II, for server driven content negotiation the client can
define as part of a request what resource representations it can
handle. The server then tries to find a match between this
request and the available representations. This content
negotiation is modeled by the classes EntityAccepted and
LanguageAccepted. Using EntityAccepted, a client can define
what representations in terms of MIME types it accepts.
Similarly, LanguageAccepted allows defining which languages
are acceptable for response entity representations. Both classes
allow defining a priority value, which defines an ordering
between multiple acceptable representations.

A simple example of request entity handling and content
negotiation is shown in Listing 4. At first, two variables are
defined. Both are meant to handle data encoded in base64, in
this example some image data. The GET activity defines in the
contentNegotiation element that it accepts data in GIF format
as well as in JPEG format. The priority values indicate that GIF
data is preferred. The response element defines corresponding
entity mappings for each of the defined representations. After
the GET activity has fetched the image data, it is processed and
then again accessed by the following POST activity. In our
example we assume that the GET activity fetched the GIF
representation. Consequently, the entity mapping inside the
POST activity defines that the request entity is of the MIME
type image/gif and provided by the variable gif.

<variable name=”gif” type=”base64Binary” />

<variable name=”jpeg” type=”base64Binary” />

<GET host=”…” path=”…”>

 <contentNegotiation>

 <entityAccepted type=”image/gif”

 priority=”0.8” />

 <entityAccepted type=”image/jpeg”

 priority=”0.2” />

 </contentNegotiation>

 <response>

 <acceptEntityMapping type=”image/gif”

 variable=”gif” />

 <acceptEntityMapping type=”image/jpeg”

 variable=”jpeg” />

 </response>

</GET>

<!-- process image data -->

<POST host=”…” path=”…”>

 <requestEntityMapping type=”image/gif”

 entity=”gif” />

</POST>

Listing 4: Request mapping and content negotiation example

B. Discussion

The overarching methodology the work presented in this
paper is based on is depicted in Fig. 2. In section II we

introduced the REST principles relevant for REST service
composition and then discussed which requirements they
introduce. This part is shown in the left of Fig. 2. In the
previous section, we introduced the meta model for a set of
REST extension activities for BPEL. The right part of the
figure shows, which parts of this meta model fulfill which
requirements identified before. In the following, we will
discuss these relationships in detail.

The first requirement (R1) demands support for content
negotiation. In our meta model, this is realized by two different
entities. At first, the meta model in general represents that
entity representations are typed. This is modeled by the class
EntityMapping, which is used by request as well as response
interactions. Second, for a request, a set of accepted
representations can be defined, modeled by the class
EntityAccepted of the meta model.

The second requirement (R2) is realized by the definition of
explicit activity types for each method of the uniform interface.
In our meta model these are the classes GET, PUT, POST and
DELETE. They represent the main methods of the uniform
interface defined by the HTTP protocol.

The requirement (R3) is supported by the common
attributes host and path that can be defined for each activity
type. They are used to identify a resource by its URI, a unique
identifier. These two attributes in addition also fulfill the
requirements (R4) and (R5). The possibility to define the target
URI of each request at runtime enables to dynamically select
the partner, i.e. the resource to interact with. Besides that, it
also allows influencing the request parameters, as they are also
included in the URI.

The requirement (R6) demands the possibility to access
data as well as metadata. As resource representations are
mapped to BPEL variables, data is in any case accessible. Meta
data can be present in two different characteristics. On the one
hand, the meta data can be embedded in the resource
representation. In this case, it is also available in a BPEL
variable. On the other hand, the meta data can be provided as
HTTP header fields. Again, in our meta model header fields
and their content are mapped to BPEL variables, they are
therefore also accessible.

Fig. 2. Methodology overview

Resource Identification (R3) Support Resource Identification

HATEOAS (R5) Support Dynamic Parameters

Uniform Interface (R2) Support the Uniform Interface Activity Types

(R4) Support Dynamic Partners Host and Relative Path Attributes

Provide Accepted Types in Request

Manipulation through Representations (R1) Support Content Negotiation

Typed Entities

(R6) Enable Access to Data and Meta Data Header Access

State Transfer (R7) Manage Interaction State over Multiple Interactions Context

REST principles (relevant for composition) Requirements Fulfilled byREST principles (relevant for composition) Requirements Fulfilled by

The last requirement (R7), the support of state handling
across multiple interactions, is mainly realized by the Context
class. As described, it acts as a container for state data. As the
context is realized as BPEL variable, a composition can contain
multiple contexts and thereby manage multiple interaction
states in parallel. This enables modeling compositions
comprising multiple parallel interactions with different REST
services, each with its own interaction state. Each activity type
references exactly one context variable and therefore shares the
state contained in the corresponding context.

To summarize the methodology depicted in Fig. 2, we first
identified a set of general requirements for REST service
composition directly from the definition of the REST
constraints. Our meta model of a BPEL extension for REST
service composition was then designed to fulfill exactly these
requirements. Finally, we discussed for each of the
requirements, by which part of the meta model it is fulfilled.
Another key feature of our BPEL extension is standard
compatibility. We solely used explicitly defined extension
capabilities, i.e. the concept of extension activities and we
realized other extensions, like for example the context, by
mapping them to BPEL variables. As a result, the extended
BPEL language does not lose any of its features but wins the
additional feature of supporting REST service composition.

V. REALIZATION AND VALIDATION

The BPEL extension activities presented in section IV are
prototypically implemented and integrated into an open source
BPEL engine, the Apache Orchestration Director Engine
(ODE), Apache ODE explicitly provides an extension point to
plug in execution logic for arbitrary BPEL extension activities.
At deployment time, for each extension activity type contained
in a BPEL process it is checked, if a corresponding
implementation is available. If this check is successful, the

BPEL process can be instantiated and executed. The realization
of the meta model of our BPEL extension also includes XML
schema definitions for context and header variables.

For validation purposes we use the SimTech Scientific
Workflow Management System (SimTech SWfMS) for the
modeling, execution and monitoring of BPEL workflows. The
SimTech SWfMS is based on conventional workflow
technology and has been specifically adapted to the needs of
simulation workflows [11]. The workflow engine of the
SimTech SWfMS is an extended version of Apache ODE, the
integrated modeling and monitoring tool is based on the open
source Eclipse BPEL Designer3.

The use case for our validation is based on the simulation
application OPAL (Ostwald-Ripening of Precipitates on an
Atomic Lattice) [20]. OPAL implements a Kinetic Monte
Carlo (KMC) simulation of the growth process of precipitates
in copper and has originally been developed as a set of
monolithic programs written in Fortran. In previous work, the
OPAL application has been extended with a management
framework and wrapped as web services [21]. As a result, the
processing of OPAL based simulations has been modeled as a
BPEL process executable by the SimTech SWfMS. In addition
to a web service interface, the extended OPAL application is
also accessible as REST service.

To validate our BPEL extension for REST service
composition, we modeled the composition for an OPAL based
simulation in BPEL using the extension activities presented
before. The resulting OPAL process consists of four basics
steps. At first, a simulation context is created, the input data for
the simulation is stored in this context and the data is
preprocessed using the opalbcc and opalabcd services. After
that, access to the opalmc service, the core KMC simulation, is

3 http://www.eclipse.org/bpel/

Fig. 3. SimTech SWfMS showing OPAL simulation with REST composition

enquired. As soon as enough compute resources are available,
access to the opalmc service is granted and the KMC
simulation is started. While the simulation is running, which
maybe days to weeks, at regular intervals checkpoints with
intermediate results are generated. In a third step, these
checkpoint data are analyzed using the opalclus and opalxyzr
services. After the simulation has finished and all checkpoint
data are analyzed, in the last step the opalmedia service is
called. This service creates a simple visualization of the
simulation data.

A screenshot of the graphical frontend of the SimTech
SWfMS is shown in Fig. 3. In the center, an excerpt of the
described OPAL simulation process is shown. In this part of
the simulation, a POST request is used to enquire access to the
opalmc service. This request is followed by a loop containing a
GET request to regularly check the status of the submitted
opalmc service request. As soon as the opalmc service is
available, the loop is finished and the following POST request
starts the KMC simulation. When a process is modeled, the
SimTech SWfMS frontend provides a convenient way to
automatically deploy and start the process. On the right side of
Fig. 3, the corresponding dialog window is shown, where the
user can provide input parameters needed by a process. The
result of the execution of the OPAL process, a visualization of
the simulation data, is shown in the left part of Fig. 3.

VI. RELATED WORK

A first approach towards REST service composition also
based on the BPEL composition language is presented in [22].
Similarly to our approach, separate activities are defined for
each of the HTTP operations. However, the definition of these
REST activities is only little abstracted from HTTP. Whereas
the approach presented in our work supports many features by
explicit and HTTP independent modeling constructs (e.g.
caching, access data, content negotiation), many of these have
to be realized by setting and reading low-level HTTP header
fields in [22]. In addition to defining a means for composing
REST services, the author also describes how to realize a
REST service by using BPEL. Following the recursive
composition model of BPEL, a process itself is again provided
as a resource.

The Bite composition language proposed in [23] focuses on
the domain of web mashups. It provides a lightweight process
model and adopts several concepts from scripting languages,
for example implicitly defined variables and data flow. In order
to realize mashups of web resources, Bite provides several
activity types to interact with REST services. However, as Bite
is defined for the rather special use case of web mashups and in
addition has several implicit functionality, the REST
composition capabilities are rather limited compared to the
requirements defined in our work.

In [24] the authors focus mainly on the HATEOAS aspect
of REST and its implication on REST service composition. For
this purpose, a composition language called Resource Linking
Language (ReLL) is defined together with a petri net based
meta model. In ReLL, the links between resources are
explicitly modeled in the composition and the interaction with
resources focuses on selecting and following links. While

focusing on the HATEOAS aspect, the ReLL language does
neglect data flow capabilities that are in contrast supported by
our BPEL based approach. As the ReLL language is a research
prototype, it lacks the maturity and quality of service of well-
established composition languages like BPEL.

In [25] REST service composition is discussed with focus
on the application domain of mashups. Similarly to our work, a
set of requirements for REST composition is defined. In
contrast to our methodology, no explicit connection between
the REST constraints and the defined requirements is shown.
The set of requirements defined in [25] and the set of
requirements defined in our work have some overlapping but
also some differences. Where [25] requires dynamic typing as
well as content negotiation, we do only require support for
content negotiation (R1) but not for dynamic typing. Instead of
introducing dynamic typing to BPEL, in our solution we first
perform content negotiation and then transform non-XML
representations into corresponding XML representations. In
addition, we define some requirements that are not, or at least
not explicitly, covered in [25] (R3, R6, R7).

VII. CONCLUSION AND FUTURE WORK

The work presented in this paper is based on the three step
methodology illustrated in Fig. 2. As starting point, we
performed a detailed analysis of the REST architectural style in
relation to service composition. We were able to infer a set of
seven basic requirements to be fulfilled by REST service
composition. In a second step, we introduced a meta model for
REST service composition based on the BPEL composition
language. Doing so, we did not only aim at fulfilling the
defined requirements, we also enabled to reuse the already
available functionality of a standardized, mature and powerful
composition language and to combine it with new abilities for
REST service composition. In a third step, we were able to
show, that all requirements were already fulfilled by the design
of our meta model. The presented approach for REST service
composition has been validated based on a real world use case
from the eScience domain. We realized the BPEL extension as
part of the SimTech SWfMS and then used it to successfully
model and execute an OPAL simulation.

As part of our future work, we plan to evaluate the
feasibility as well as the advantages and disadvantages of
different service composition approaches. One fundamental
aspect that became clear during the validation of our approach
is the handling of long running operations. When using BPEL
for the composition of web services, long running operations
are typically realized as asynchronous operations using a
callback mechanism. In contrast to that, in REST service
composition based on HTTP, asynchrony is not supported.
Therefore, long running operations are typically realized using
a polling mechanism. This is only one example of how the
different composition approaches differ, and we think it might
be promising to investigate this in more detail.

ACKNOWLEDGMENT

This work was partially funded by the BMWi project
Migrate! (01ME11055). D. Karastoyanova and K. Vukojevic-
Haupt would like to thank the German Research Foundation

(DFG) for financial support of the project within the Cluster of
Excellence in Simulation Technology (EXC310/1) at the
University of Stuttgart.

REFERENCES

[1] Papazoglou, Mike P. "Service-oriented computing: Concepts,
characteristics and directions." Web Information Systems Engineering,
2003. WISE 2003. Proceedings of the Fourth International Conference
on. IEEE, 2003.

[2] Chen, L., Shadbolt, N. R., Goble, C., Tao, F., Cox, S. J., Puleston, C., &
Smart, P. R. (2003). Towards a knowledge-based approach to semantic
service composition. In The Semantic Web-ISWC 2003 (pp. 319-334).
Springer Berlin Heidelberg.

[3] Benatallah, B., Dumas, M., Sheng, Q. Z., & Ngu, A. H. (2002).
Declarative composition and peer-to-peer provisioning of dynamic web
services. In Data Engineering, 2002. Proceedings. 18th International
Conference on (pp. 297-308). IEEE.

[4] Hamadi, R., & Benatallah, B. (2003, January). A Petri net-based model
for web service composition. In Proceedings of the 14th Australasian
database conference-Volume 17 (pp. 191-200). Australian Computer
Society, Inc..

[5] OASIS: Web Services Business Process Execution Language Version
2.0 (11 April 2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html

[6] Fielding, R.T.; Taylor, R.N.: Principled design of the modern Web
architecture. In: ACM Trans. Internet Technol. 2, 2 (May 2002)

[7] Pautasso, C., Zimmermann, O., & Leymann, F. (2008, April). Restful
web services vs. big'web services: making the right architectural
decision. In Proceedings of the 17th international conference on World
Wide Web (pp. 805-814). ACM.

[8] Mell, Peter; Grance, Timothy (2011): The NIST Definition of Cloud
Computing (Draft). http://www.nist.gov/itl/cloud/.

[9] Mietzner, R., Unger, T., & Leymann, F. (2009). Cafe: A generic
configurable customizable composite cloud application framework. In
On the Move to Meaningful Internet Systems: OTM 2009 (pp. 357-364).
Springer Berlin Heidelberg.

[10] Binz, T., Breiter, G., Leyman, F., & Spatzier, T. (2012). Portable Cloud
Services Using TOSCA. IEEE Internet Computing, 16(3).

[11] Görlach, K., Sonntag, M., Karastoyanova, D., Leymann, F., & Reiter,
M. (2011). Conventional workflow technology for scientific simulation.
In Guide to e-Science (pp. 323-352). Springer London.

[12] Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2009). Workflows
and e-Science: An overview of workflow system features and
capabilities. Future Generation Computer Systems, 25(5), 528-540.

[13] Pagni, M., Hau, J., & Stockinger, H. (2008, May). A multi-protocol
bioinformatics web service: Use soap, take a rest or go with html. In
Cluster Computing and the Grid, 2008. CCGRID'08. 8th IEEE
International Symposium on (pp. 728-734). IEEE.

[14] Fox, G. C., Guha, R., McMullen, D. F., Mustacoglu, A. F., Pierce, M.
E., Topcu, A. E., & Wild, D. J. (2009). Web 2.0 for Grids and e-Science.
In Grid enabled remote instrumentation (pp. 409-431). Springer US.

[15] Weerawarana, S., Curbera, F., Leymann, F., Storey, T., & Ferguson, D.
F. (2005). Web services platform architecture: SOAP, WSDL, WS-
policy, WS-addressing, WS-BPEL, WS-reliable messaging and more.
Prentice Hall PTR.

[16] Ouyang, C., Verbeek, E., Van Der Aalst, W. M., Breutel, S., Dumas, M.,
& Ter Hofstede, A. H. (2007). Formal semantics and analysis of control
flow in WS-BPEL. Science of Computer Programming, 67(2), 162-198.

[17] Papazoglou, M. P. (2003). Web services and business transactions.
World Wide Web, 6(1), 49-91.

[18] Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001).
Web services description language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

[19] Chinnici, R., Moreau, J. J., Ryman, A., & Weerawarana, S. (2007). Web
services description language (wsdl) version 2.0 part 1: Core language.
W3C recommendation, 26, 19. http://www.w3.org/TR/wsdl20/

[20] Binkele, P., & Schmauder, S. (2003). An atomistic Monte Carlo
simulation of precipitation in a binary system. Zeitschrift für
Metallkunde, 94(8), 858-863.

[21] Sonntag, M., Hotta, S., Karastoyanova, D., Molnar, D., & Schmauder, S.
(2011). Using services and service compositions to enable the
distributed execution of legacy simulation applications. In Towards a
Service-Based Internet (pp. 242-253). Springer Berlin Heidelberg.

[22] Pautasso, C. (2009). RESTful Web service composition with BPEL for
REST. Data & Knowledge Engineering, 68(9), 851-866.

[23] Rosenberg, F., Curbera, F., Duftler, M. J., & Khalaf, R. (2008).
Composing restful services and collaborative workflows: A lightweight
approach. Internet Computing, IEEE, 12(5), 24-31.

[24] Alarcon, R., Wilde, E., & Bellido, J. (2011). Hypermedia-driven
RESTful service composition. In Service-Oriented Computing (pp. 111-
120). Springer Berlin Heidelberg.

[25] Pautasso, C. (2009). Composing RESTful Services with JOpera. In
Software Composition (pp. 142-159). Springer Berlin Heidelberg.

All links were last followed on 2014-06-18.

	cover-IEEE
	EDOC 2014

