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Cloud applications typically consist of multiple components interacting with each other. Service-orientation,
standards such as WSDL, and the workflow technology provide common means to enable the interaction
between these components. Nevertheless, during the automated application deployment, endpoints of interacting
components, e.g., URLs of deployed services, still need to be exchanged: the components must be wired.
However, this exchange mainly depends on the used (i) middleware technologies, (ii) programming languages,
and (iii) deployment technologies, which limits the application’s portability and increases the complexity of
implementing components. In this paper, we present a programming model for easing the implementation of
interacting components of automatically deployed applications. The presented programming model is based on
the TOSCA standard and enables invoking components by their identifiers and interface descriptions contained
in the application’s TOSCA model. The approach can be applied to Cloud and IoT applications, i.e., also
software hosted on physical devices may use the approach to call other application components. To validate the
practical feasibility of the approach, we present a system architecture and prototype based on OpenTOSCA.

1 INTRODUCTION

Cloud computing is an important paradigm for the
realization of modern IT systems focussing on auto-
mated deployment and management (Leymann, 2009).
According to an overview of forecasts published by
Forbes (Columbus, 2016), the importance of cloud
computing for the market is still growing. Since this
paradigm nearly allows using infinite computing re-
sources on demand, it enables developers to easily
build highly elastic cloud applications. To benefit from
cloud properties, applications are typically composed
of multiple interacting components and services. As
a result, the orchestration and wiring of application
components are major issues. But also in the field of
the Internet of Things (IoT) where different sensors
and actuators need to be connected in a way that they
can be controlled over the internet, orchestration and
wiring services and devices play an important role.
However, if different kinds of technologies have
to be used to build an application, also different infor-
mation about each component need to be exchanged
between them during the automated deployment to
enable their interaction. Consider an IoT scenario in
which a cloud platform offering is used for hosting a
graphical frontend component showing information

about a physical device, e.g., a measured temperature.
The participating components, i.e., the software on
the device, the device itself, the frontend software,
and the platform need to be wired during the deploy-
ment of the overall application: the endpoint of the
frontend needs to be known by the device software
to publish information. As a result, during the de-
ployment of such composite applications, typically
endpoint information, e.g., the IP-address, credentials,
and communication protocols, need to be exchanged
between components to enable their interaction. Un-
fortunately, such mechanisms are typically bound to a
certain technology and depend on the used (i) middle-
ware technologies, (ii) programming languages, and
(iii) deployment technologies. As a result, custom
code needs to be written in components to receive end-
point information. Thus, despite the availability of
technologies for describing and abstracting communi-
cation, e.g., WSDL (W3C, 2001), service buses, and
orchestration capabilities of deployment technologies
such as Docker Compose', if multiple heterogeneous
technologies need to be combined, orchestration and
wiring are still technology-specific and open issues—a
standards-based programming model is missing.

Thttps://docs.docker.com/compose/



In this paper, we tackle these issues. We present
a programming model for easing the implementation
of interacting components of automatically deployed
applications by abstracting endpoint handling. The
presented programming model is based on the TOSCA
standard (OASIS, 2013b; OASIS, 2013a) and enables
invoking components by their identifiers and interface
descriptions contained in the application’s TOSCA
model via a service bus. The approach can be applied
to both Cloud and IoT applications, i.e., also software
hosted on physical devices may use the approach to
call other application components and to abstract con-
figuration issues. To validate the practical feasibility
of the approach, we present a system architecture and
prototype including a Camel-based service bus, which
understands the corresponding TOSCA model to route
the invocations between components. To summarize,
the main contributions we present in this paper are:

* An extension of the Topology and Orchestration
Specification for Cloud Applications (TOSCA)
(OASIS, 2013b) to define business operations of
components in a technology-agnostic manner

* A TOSCA-based programming model that enables
the unified communication between components
of an automatically deployed application

* A system architecture of an automated deployment
and orchestration system including a service bus
that enables communication between components
following the presented programming model

* A prototypical implementation of the architecture
based on the standards-based deployment and man-
agement system OpenTOSCA (Binz et al., 2013)

The remainder of this paper is organized as follows:
In Section 2, we discuss different state of the art ap-
proaches for automating the orchestration and wiring
of components and illustrate the existing problems and
limitations we tackle in this work. As our work is
mostly based on TOSCA, we explain the standard in
Section 3. In Section 4, we present our TOSCA-based
programming model, which abstracts the communica-
tion between components and any endpoint handling.
Our extension to enable the modeling of application
interfaces is presented in Section 5, followed by the
corresponding communication concepts implemented
as service bus, discussed in Section 6. Our approach
is validated by a prototypical implementation in Sec-
tion 7. Finally, related work is discussed in Section 8
and our conclusion is presented in Section 9.

2 PROBLEM STATEMENT

In this section, we discuss different state-of-the-art ap-
proaches for automating the orchestration and wiring
of components using existing technologies. Further-
more, on the basis of the discussed approaches, we
illustrate the problems, e.g., the exchange of endpoint
information, that take place when utilizing them.

Of course, using a single composition technology,
such as Docker Compose” or Kubernetes?, solves the
issue of automatically wiring components of appli-
cations in which all components are deployed and
operated using only one technology: Such technolo-
gies typically provide built-in wiring and orchestration
capabilities that must be considered when implement-
ing a component, e.g., by propagating environment
variables to containers or by placing and sharing con-
figuration files, which are used by a component to
connect to another one (Burns et al., 2016). However,
in composite cloud applications that consist of multi-
ple heterogeneous components—especially if physical
devices are involved in IoT scenarios—typically mul-
tiple technologies have to be combined (Breitenbiicher
et al., 2013). Unfortunately, this also requires combin-
ing multiple invocation mechanisms, protocols, and
endpoint exchange mechanisms leading to custom
code that binds a component to an invoked component
and its implementation if no service bus (Chappell,
2004) or—for cyber-physical scenarios—IoT middle-
ware (Guth et al., 2016) is used for abstraction.

Accordingly, for the interaction of (micro)services,
the endpoint of a service needs to be known by the call-
ing service to enable their communication. While the
service bus concept solves this issue from a commu-
nication layer perspective, if a concrete target service
shall be invoked, at least its unique identifier (ID in
the following) is needed and must be contained in
the message sent to the bus. If an IoT middleware is
used, such as a message broker, typically the ID of
the topic to which a devices publishes must be known
by sender and receiver. However, exchanging such
IDs is technically similar to exchanging endpoints of
the invoked components, e.g., URLs of the deployed
components. Thus, nevertheless which approach is
used, an appropriate exchange mechanism is required.
Especially, such information is typically required dur-
ing deployment time of a component to tell it to which
other components (or to which service bus) it shall
connect*. Since there is no standardized approach for

Zhttps://docs.docker.com/compose/

3http://kubernetes.io/

4This is a general requirement if an entire application
gets deployed automatically. Of course, this does not apply
to hard-wired scenarios, which are not the focus of our work.
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Figure 1: Two exemplary state of the art orchestration variants of an IoT-Cloud scenario.

(i) exchanging arbitrary kinds of endpoint information
between components which they require to communi-
cate with each other and (ii) exchanging IDs to enable
components to invoke a certain component via a ser-
vice bus, this kind of information is typically handled
in an application-specific manner during the deploy-
ment time of the overall application using manually
created configuration scripts and similar approaches.

For example, if a component is implemented as
script, typically environment variables are used to pass
information. This kind of exchange is used, for ex-
ample, in an approach of Wettinger et al. enabling
the unified invocation of scripts implementing man-
agement operations (Wettinger et al., 2014). Also,
often configuration files need to be updated, e.g., as
used by da Silva et al. in an IoT deployment scenario
(da Silva et al., 2016). All these issues are reflected in
the implementations of components, which limits the
application’s portability since the used technologies
and their exchange mechanisms need to be considered.

To summarize, despite service-orientation, stan-
dards such as WSDL, service buses and the workflow
technology, which provide common means to enable
the interaction between components, their automated
deployment and wiring is still a technology-dependent
issue. Moreover, this issue itself is highly depending
on the used (i) middleware technologies, (ii) program-
ming languages, and (iii) deployment technologies.
As a result, this significantly increases the complexity
of implementing components as well as orchestrating
them. Thus, leading to custom written code.

In the next section, we illustrate the problems that
occur when using state of the art wiring approaches, for
example, establishing a direct communication between
two components or applying a service bus instead by
means of an exemplary [oT-Cloud scenario.

2.1 Motivating Scenario

Figure 1 depicts a typical IoT-Cloud scenario describ-
ing the wiring of components. In this scenario, the
Python 3 App running on a Raspberry Pi measures
temperature data that shall be sent to the Java 7 App,
which is responsible for storing and displaying this
data. In order to enable the Python 3 App sending the
measured temperature data to the Java 7 App after the
automated provisioning of all shown components, the
Python 3 App needs additional endpoint information.

Two possibilities to connect the components are
shown: (i) a direct communication and (ii) a communi-
cation via a central service bus. However, both variants
require exchanging endpoint information: The Python
3 App either needs (i) an endpoint (e.g. an URL) of the
Java 7 App in case of a direct communication, or in
case of using the service bus, (ii) some kind of ID spec-
ifying the Java 7 App needs to be known. Moreover, in
case of the service bus, the Java 7 App must be regis-
tered at the bus to make itself known. Even when using
a standard such as WS-Addressing’, some information
needs to be exchanged before an initial connection can
be established. This results in custom code written
for each component to accomplish the initial exchange
of the required endpoint information. However, this
decreases the portability of components since it binds
them to the used orchestration technology, in particu-
lar, to its endpoint exchange mechanism. Moreover,
additional effort and expertise is required for imple-
menting components and debugging due to multiple
error sources. To address these issues, we present a
standards-based programming model to abstract the
communication between heterogeneous components
and proprietary endpoint exchange mechanisms.

Shitps://www.w3.org/TR/ws-addr-core/



3 THE TOSCA STANDARD

To provide a comprehensive background, we first ex-
plain the TOSCA standard in this section because all
the following concepts are based on this language.

The Topology and Orchestration Specification for
Cloud Applications (TOSCA) (OASIS, 2013b; OA-
SIS, 2013a; Binz et al., 2014) is an official OASIS
standard enabling to describe the needed infrastructure
resources, the components, as well as the structure of
a cloud application in an interoperable and portable
manner. Furthermore, TOSCA supports the defini-
tion of operations required for the management of an
application. Thus, TOSCA enables the automated pro-
visioning and management of cloud applications. The
structure of a cloud application is defined in a topology
template. Figure 2 shows such a template that models
the cloud part of the motivating scenario. A topology
template is a graph consisting of nodes and directed
edges. The nodes are called node templates and rep-
resent components of the application, e.g., an Apache
Tomcat, a MySQL-Database, a virtual machine, or a
cloud provider. The edges connecting the nodes are
called relationship templates, allowing to model the
relationships between the nodes. For example, a rela-
tion could be "hosted on” specifying that a component
is hosted on another component, “depends on” spec-
ifying that a component has dependencies to another
component, or "connects to” specifying that a compo-
nent needs to connect to a database, for example.

For reusability purposes, TOSCA allows the speci-
fication of node types and relationship types defining
the semantics of the node and relationship templates.
For example, properties, e.g., credentials or the port of
a web server, as well as available management opera-
tions of a modeled component are defined within the
types. In Figure 2, types are put into brackets follow-
ing the visual notation VINO4TOSCA (Breitenbiicher
et al., 2012). Management operations are bundled in
interfaces and enable the management of the respec-
tive component. For example, a component node usu-
ally provides an "install” operation for installing the
component, while a hypervisor or cloud provider node
typically provides a ’createVM” operation for creating
a new virtual machine. The artifacts implementing
the management operations are called implementation
artifacts, which are, for example, implemented as web
service packaged as WAR file or just a simple SH
script. Additionally, besides implementation artifacts,
TOSCA defines deployment artifacts, which represent
the artifacts implementing the business logic of the
nodes. A deployment artifact, for example, could also
be a WAR file, but implementing the Java application
that should be provisioned on the VM.

( a
_____________________________ ID: App
i L (Java7App) J
v ) v .
ID: Database ID: Webserver
(MySQL5.7DB) (Tomcat8) J
Port: 3306 Port: 8080
Credentials: [...] Credentials: [...] J
"

! !

ID: VM
(Ubuntu14.04VM) J

Type: t2.small
User: ubuntu J
V--

v

ID: |aaSProvider

(AmazonEC2) J
Username: U42a2
Password: g3jn5v2t
v..
——p =hostedOn e p» = connectsTo

Figure 2: Exemplary TOSCA Topology Template.

In order to create or terminate an instance of a
topology template and to allow the automated manage-
ment of the application, so-called management plans
can be specified in TOSCA models. Management
plans are executable workflow models that implement
a certain management functionality. They define which
management operations need to be executed in which
order to achieve a higher level management goal, e.g.,
to provision a new instance of the entire application
or to scale out a component. TOSCA does not specify
a particular process modeling language for the defini-
tion of plans, however, recommends to use a workflow
language such as the Business Process Execution Lan-
guage (BPEL) (OASIS, 2007) or the Business Process
Model and Notation (BPMN) (OMG, 2011).

Moreover, the standard specifies a portable packag-
ing format: All artifacts, type definitions, the topology
template, management plans, and all additional files
required for automating the provisioning and manage-
ment can be packaged into a self-contained Cloud Ser-
vice ARchive (CSAR). This archive can be executed by
all standard-compliant TOSCA Runtime Environments,
e.g., OpenTOSCA (Binz et al., 2013), and, thus, en-
sures the application’s portability and interoperability.

In the next sections, we present our novel program-
ming model as well as our extension of TOSCA en-
abling the definition of operations implementing the
business logic of cloud applications in the almost ex-
act same manner as the management operations are
defined when using the standard TOSCA elements.
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4 TOSCA-BASED
PROGRAMMING MODEL

This section presents our TOSCA-based programming
model, whose goal is to completely abstract (i) the
communication between components and (ii) any end-
point handling. It allows to program the invocation of
operations offered by other components in almost the
same manner as they would be available locally.

Figure 3 shows the concept of the programming
model. On the upper half, a simplified deploy-
ment model of the motivating scenario is modeled
as TOSCA topology template. On the left side of the
template, the component Java 7 App with ID App and
its underlying stack hosted on the Amazon cloud is
shown. Furthermore, a description of a business inter-
face TempManagement and its operation updateTemp
to update a temperature value with the input parameter
val is illustrated. On the right side of the template,
the stack of the component Python 3 App with ID
TempPublisher, which shall be hosted on a physical
Raspberry Pi 3, is depicted. The main function of the
TempPublisher is to send measured temperature data to
the Java 7 App by invoking its operation updateTemp.
On the lower half of the figure, a physical deployment
of this template is shown. Also, the temperature sen-
sor connected to the Raspberry Pi 3 is depicted in this

physical deployment view. On the left side, an exem-
plary implementation of the updateTemp operation is
shown in pseudo code while the right side shows the
simplified implementation of the TempPublisher.

The main idea of our programming-model is to
enable the invocation of operations provided by other
components only based on information contained in
the TOSCA topology template: to implement an in-
vocation, the TOSCA ID of the component to be
invoked is used as object in the code while the de-
sired operation is called as usual in object-oriented
programming. For example, the code of the Temp-
Publisher contains an invocation of the updateTemp-
operation of the TOSCA node template having the
ID App (Rpp.updateTemp (val)). Thus, although the
App component is hosted on the Amazon cloud and
the TempPublisher component is hosted on a phys-
ical device, the operation updateTemp can be used
within the TempPublisher component as it would be
a locally available method. Therefore, no program-
ming for endpoint handling or against a service bus is
required, which abstracts all relevant wiring aspects.
Furthermore, since all IDs of the components are spec-
ified in the topology template and, therefore, are well-
known, no exchange of IDs is required at all in order
to discover components and to establish a connection
enabling the communication between components.



5 TOSCA EXTENSION

For the realization of our programming-model, the op-
erations implementing business logic of an application
must be defined in the corresponding TOSCA model.
Since this is not supported by TOSCA out of the box,
in this section, we present a TOSCA-extension to de-
fine business operations of applications modeled using
TOSCA. Thus, we extend TOSCA by an Interface Def-
inition Language (IDL) for business operations. In or-
der to ease understanding business operations, we first
dissociate them from management operations, which
can be already modeled in TOSCA. We also discuss
how our new abstraction layer nicely complements
accepted standards such as WSDL (W3C, 2001).

5.1 Application Interfaces

In Section 3 we presented the fundamentals of the
TOSCA standard. We outlined that implementation
artifacts implement the management operations pro-
vided by node templates. Implementation artifacts can
be realized using any arbitrary technology such as a
simple shell script, a WAR file exposing a web ser-
vice, or more sophisticated technologies such as Chef
recipes (Taylor and Vargo, 2014) or Ansible playbooks
(Mohaan and Raithatha, 2014). Orchestrated by man-
agement plans, these management operations enable
automating arbitrary management tasks of cloud appli-
cations. But besides management operations, nodes
of course can also have operations implementing the
business logic of the corresponding node. For exam-
ple, in our motivating scenario, the Java application
provides an operation to update the temperature data
to be displayed (cf. Section 2.1). However, currently
this business operation cannot be modeled in TOSCA,
which is required to realize our new programming
model. Therefore, we extend TOSCA node types by a
modeling schema for business operations.

Our TOSCA extension enables the communication
between components contained (i) in one topology
template or (ii) in different templates and, thus, also al-
lows other applications to utilize the offered operations.
We extended the metamodel of TOSCA node types by
an ApplicationInterfaces element, which follows the
schema of the TOSCA ManagementInterfaces (OA-
SIS, 2013b). Thus, within the ApplicationInterfaces
element, the elements defined for ManagementInter-
faces are reused: Operation, InputParameter, and Out-
putParameter are reused. However, contained in Ap-
plicationInterfaces, an Operation specifies a business
operation and not a management operation. The fol-
lowing Listing 1 shows how application interfaces and
business operations can be defined using the extension:

1 <NodeType name="JavaT7App">

2 <ot:ApplicationInterfaces

3 xmlns:ot="http://opentosca.org">

<Interface name="TempManagement">

<Operation name="updateTemp">
<documentation>
Updates the temperature
</documentation>
<InputParameters>

10 <InputParameter name="val"

11 type="xs:int"/>

12 </InputParameters>

13 </Operation>

14 </Interface>

15 </ot:ApplicationInterfaces>

16 </NodeType>

Neolo IEN B e V) e

Listing 1: Example of the TOSCA extension for specify-
ing application interfaces containing business operations.

In the shown example, the component Java7App
offers the operation updateTemp in order to store and
display the received temperature data. The temper-
ature value is specified via the input parameter val®.
Based on the shown XML listing defining the provided
operation, the input and output parameters, as well as
documentations, a code-skeleton (Listing 2) for the
Java application can be generated (cf. Sect. 6.2):

1 class TempManagement {

2

3 /**

4 * Updates the temperature

5 */

6 static void updateTemp (int val) {
7 // TODO generated method stub

8 }

9 1

Listing 2: Generated code skeleton in Java.

5.2 Bindings

However, in order to technically enable callers, such
as a service bus, invoking the specified business opera-
tion, certain binding information regarding the invoca-
tion style and typically application-specific properties
are required. These information need to be specified
by the application developer in the TOSCA model of
the corresponding operation, so that they are available
during runtime. The following XML listing (Listing 3)
shows an example of such binding information.

5Qutput parameters can be specified the same way



1 <ot:ApplicationInterfacesBinding>

2 <ot:Endpoint>/TempApp</ot:Endpoint>

3 <ot:InvocationType>JSON/REST

4 </ot:InvocationType>

5 <ot:ApplicationInterfaceInformations>
6 <ot:ApplicationInterfaceInformation

7 name="TempManagement"

8 class="org.temp.TempManagement" />

9 </ot:ApplicationInterfaceInformations>
10 </ot:ApplicationInterfacesBinding>

Listing 3: Binding information.

These binding information shown in Listing 3 need
to be defined in the artifact template, which is refer-
enced by the deployment artifact implementing the
business operations defined in an application inter-
face of the corresponding node template. To recap,
node templates represent components within a TOSCA
topology template whereas deployment artifacts rep-
resent the artifacts implementing the business logic of
such a component, e.g., a WAR file implementing the
Java application that should be installed (cf. Section 3).
Thus, these binding information together with our new
TOSCA extension described in Section 5 allow to spec-
ify the provided business operations of a component
as well as how they have to be invoked in detail.

In contrast to using such a custom artifact template
for binding business operations defined in application
interfaces to their implementation, accepted standards
can be used, too. For example, the W3C defined the
Web Services Description Language (WSDL) (W3C,
2001) in order to describe the provided functionality
of web services. A WSDL file allows to bind the
signature of an operation, i.e., the name and the input
and output parameters, to information about how this
operation can be invoked, such as the endpoint and the
supported communication protocol.

However, Wettinger et al. (Wettinger et al., 2014)
presented a similar TOSCA-based approach to define
such binding information within an artifact template
for management operations. Therefore, in order to
allow a consistent definition for management opera-
tions as well as business operations, we decided to
additionally support this custom definitions of binding
information within an artifact template, too.

Thus, all together, our approach supports (i) a bind-
ing definition as already used within another TOSCA-
based approach as well as (ii) standards such as WSDL.
In case of using WSDL, the interface and operations
specified within the TOSCA model should correspond
to the information specified within the WSDL file.
Then, our presented approach enables to use all the
proven and established tooling possibilities for WSDL,
such as automated top-down code generation.

6 SYSTEM ARCHITECTURE

As their was no possibility to define business oper-
ations using TOSCA without our extension, no tool
support exists enabling the communication (i) between
components within one TOSCA topology template and
(i1) between components of different TOSCA topology
templates. Therefore, in this section, we present a sys-
tem architecture for TOSCA runtimes that utilizes a
service bus supporting our TOSCA extension.

6.1 Overview

The system architecture we introduce is shown in Fig-
ure 4 in a simplified manner: We only depict compo-
nents of TOSCA runtimes that are required for real-
izing our new programming model. Of course, multi-
ple other components are also required, for example,
model interpreter, etc. A comprehensive overview on
different TOSCA runtime architectures can be found
in the TOSCA Primer (OASIS, 2013a).

The central component of the concept is a service
bus, which is integrated in the TOSCA runtime’. This
service bus provides a generic, unified interface for
incoming invocations of business operations provided
by components. This interface can be realized, for
example, as HTTP-based REST interface, which sup-
ports synchronous operation invocations within a sin-
gle HTTP request or asynchronous invocations via
resource polling. Also other communication proto-
cols, for example, a SOAP interface supporting WS-
Addressing (W3C, 2004) or a plugin-based implemen-
tation are possible. Depending on the implementation
of the interface, also a proxy may be used in the com-
ponent’s implementation to ease communicating with
the bus, e.g., to handle asynchronous callbacks.

For executing invocations, the service bus also con-
tains a plugin system for outgoing invocations of dif-
ferent types, e.g., a SOAP/HTTP plugin. In order
to enable the invocation of the business operations
of components, the service bus needs to be able to
determine invocation-relevant properties, such as the
IP-address of the deployed component providing the
corresponding operation. Therefore, the service bus is
integrated with other components of the TOSCA run-
time to access such stored information about applica-
tion instances, e.g., gathered during the provisioning.

In order that the incoming message from the ser-
vice bus can be processed, the code implementing the
communication part of the component of the invoked

70f course, other kinds of middleware may also be used
similarly for realizing our programming model, e.g., a mes-
saging middleware. This is part of our future work.
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Figure 4: Simplified system Architecture of a TOSCA runtime supporting the presented programming model by a service bus.

operation of course needs to be compatible with the in-
coming message. There are three possibilities to reach
that: (i) manually programming against a provided
communication protocol of the service bus, (ii) using a
generic stub suitable for an existing plugin, or (iii) us-
ing a TOSCA Interface Compiler to generate stubs
and proxies compatible with the service bus commu-
nication protocol out of a TOSCA file. Thus, to ease
receiving requests from the bus, a stub may be useful
in the receiver similarly to proxies on the side of in-
voking components. Therefore, we introduce TOSCA
Interface Compilers in the next subsection.

6.2 TOSCA Interface Compiler

To ease the implementation of the communication part
of a component, our approach enables to generate a
client-proxy and server-stub able to communicate with
the service bus. Since all information about the busi-
ness operations, their parameters, and binding are con-
tained in the TOSCA model, similarly to generating
code out of WSDL files, our approach supports this,
too, in order to ease implementing interacting compo-
nents. The TOSCA Interface Compiler gets TOSCA
files defining the operations implementing the business
logic of an application, i.e., the application interface,
parses these files, generates the code, compiles it, and
finally builds it. Thus, the TOSCA Interface Compiler
helps (i) during the implementation phase of an ap-
plication with the generation of code-skeletons of the
specified operations and (ii) to generate a stub and a
proxy that enable the communication with the service
bus, as it is shown in Figure 4. Before the generation,
the compiler can be customized, e.g., to choose the
programming languages of the components for includ-

ing required libraries, etc. If a separate WSDL file is
referenced instead of using our binding definition (cf.
Section 5.2), also the top-down approach for code gen-
eration using any WSDL tool can be used. Thus, our
approach complements existing code generation tools
and enables their efficient usage during development.

7 VALIDATION

In this section, we validate the practical feasibility of
the presented concepts by implementing a prototype,
which is integrated with an open-source toolchain.

To implement our prototype, we used and extended
the OpenTOSCA Ecosystem®, which consists of: (i) the
graphical TOSCA modeling tool Winery”? (Kopp et al.,
2013), (ii) the OpenTOSCA container'® (Binz et al.,
2013), and (iii) the self-service portal Vinothek (Bre-
itenbiicher et al., 2014b). Winery is used to model
the topology template of the application and to pack-
age all files into a CSAR. The resulting CSAR can be
used as input for the OpenTOSCA container, which
interprets the contained files and deploys the modeled
application!!. The provisioning of the application can
be triggered using the self-service portal Vinothek,
which provides a graphical, web-based end user inter-
face. All tools mentioned in this section are available
as open-source implementations. Thus, our developed

8For testing, instructions to automatically deploy the
ecosystem can be found at http://install.opentosca.org

https://projects.eclipse.org/projects/soa.winery

0https://www.github.com/OpenTOSCA

Details about this deployment can be found in Breit-
enbiicher et al. (Breitenbiicher et al., 2014a)



and in OpenTOSCA integrated prototype provides an
open-source end-to-end toolchain supporting the mod-
eling, provisioning, management, orchestration and
communication of TOSCA-based cloud applications.
The service bus is implemented in the program-
ming language Java 1.7 and can be obtained from
GitHub'?. We implemented the service bus on top
of the OSGI framework Equinox!3, a dynamic and
modular component model for Java-based applications
allowing us to implement the service bus in a plugin-
based manner. For example, this allows to add and start
new plugins, even during the runtime of the service bus.
Furthermore, we used the routing and mediation en-
gine Apache Camel'* because of the provided support
of various different communication protocols and mes-
saging formats. Technically, as unified interface the
service bus provides a RESTful web service enabling
components to communicate with the service bus via
XML and JSON. Long running tasks are supported
through the implementation of a polling mechanism.
Since our unified interface supports typical HTTP mes-
sages, a proxy is not necessarily required. However,
by means of the plugin-based implementation of the
service bus, further services supporting other commu-
nication protocols, such as a SOAP-based web service
supporting asynchronous callbacks, can be added any-
time. In this case, the generation of a proxy can help
because the whole communication can be abstracted
with it. Since the provisioning IDs of the components
are contained in the TOSCA topology template, this
approach works without any assumptions regarding
the IDs of components. The service bus also provides
different plugins for sending messages to a component
providing business operations: one plugin supports
components implemented using our generic RESTful
web service stub and one plugin supports SOAP mes-
sages. Again, further plugins can be added and started
if needed. For the receiving side of the component,
we provide our generic stub implemented against the
RESTful plugin of the service bus, which also uses a
polling mechanism in case of long running tasks. The
stub is implemented for Java as well as Python and is
available as JAR file respectively as Python file and can
be obtained from GitHub!’. Thus, it can be easily used
within a corresponding application. In IoT scenarios,
Python is a widely-used programming language, e.g.,
used together with a Raspberry Pi in (da Silva et al.,
2016). Moreover, we implemented the TOSCA Inter-
face Compiler, which is available as JAR file!s, using
Java 1.7. For the communication with SOAP messages,

Zhttps://www.github.com/OpenTOSCA
Bhttp://www.eclipse.org/equinox/
4http://camel.apache.org/
Bhttps://github.com/zimmerml/OTServiceBus

a stub can be generated supporting asynchronous call-
backs through the use of WS-Addressing.

We also evaluated the performance of the com-
munication using a notebook equipped with 16 GB
RAM and 4 CPU cores @2.50 GHz running a Win-
dows 10 64bit operating system. On the system we
deployed two communicating components (A and B)
using our prototype. In order to get a feeling on how
the performance of the communication suffers from
the additional central component (the service bus),
we measured two timestamps: (i) when the message
of the calling component A reached the service bus
and (ii) when the message of the service bus reached
the component B. Thus, the additional needed time
caused by the service bus can be derived. The aver-
age measured time of 10 runs were 33 ms. Of course,
depending on the general network performance, the
additional required time caused by the bus can differ.

8 RELATED WORK

In this section, we complete our discussion about re-
lated work, which we already discussed partially in
Section 2. Regarding the dynamic and flexible invo-
cation of web services, there is different work avail-
able (De Antonellis et al., 2006; Leitner et al., 2009;
Nagano et al., 2004). However, their approaches do not
consider topology modeling aspects using standards
such as TOSCA. Regarding TOSCA-related work, a
concept as well as a prototype (Wettinger et al., 2014)
enabling the invocation of operations through a unified
interface was proposed. However, in their approach
they only consider the invocation of management op-
erations, which is already supported by the TOSCA
standard, and do not consider operations implementing
the business logic of an application.

In (Happ and Wolisz, 2016) limitations of the
publish-subscribe pattern, for example implemented in
the widely accepted IoT protocol MQTT, for the area
of IoT are presented. For instance, they argue that a
potential publisher of sensor data respectively the used
topic can not be easily discovered. Furthermore, they
mention that the standard is missing details regard-
ing the messaging reliability. Thus, leading to custom
solutions and implementations resulting in incompat-
ible applications. Therefore, they provide a concept
improving the discovery and reliability. However, stan-
dards describing the structure of an application such
as TOSCA are not considered in their work.

The problem of integrating different custom com-
ponents and technologies was already discussed in
related work. (Breitenbiicher et al., 2013) says, that
because most of the web services and APIs of vendors



and cloud providers available are not standardized, ex-
isting solutions cannot integrate them. Thus, in their
work they present an approach to integrate provision-
ing and configuration technologies. However, in their
approach they do not consider the invocation of busi-
ness operations through a unified interface. Instead,
they focused only on management technologies.

In the field of container-based orchestration, there
is available related work (Pahl, 2015; Tosatto et al.,
2015; Bernstein, 2014) discussing orchestration ap-
proaches using containers and advantages using
container technologies such as Docker Compose'®,
Docker Swarm!” and Kubernetes'® in the cloud in
general. These technologies allow, for instance, to
transfer and reuse the containers between different
cloud providers. However, they do not consider the
orchestration of non-containerized components.

The general approach of generating a stub from an
interface definition in order to enable the invocation
of a remote method as a local invocation is similar to
other approaches such as Java-RMI (Oracle, 2010) and
CORBA (OMG, 2012). Howeyver, since we are using
web service technologies such as HTTP and XML our
approach is agnostic regarding the underlying technol-
ogy. Also, since we use HTTP in our prototype we
have no issues with firewalls blocking the traffic.

9 CONCLUSION

In this paper, we presented a programming model to
ease the implementation of interacting components of
automatically deployed cloud applications. To enable
the modeling of operations implementing the business
logic of TOSCA-based cloud applications, we intro-
duced application interfaces extending the TOSCA
standard. In order to enable the communication be-
tween components contained in TOSCA models and,
thus, allowing the invocation of the defined applica-
tion operations through a unified interface, we showed
a prototypical implementation of a service bus and
presented a system architecture. We showed how the
implementation of interacting components can be sim-
plified by our approach based on hiding all technical
steps required for exchanging endpoints. To validate
our architecture and TOSCA extension, we integrated
the service bus into the existing open-source runtime
environment OpenTOSCA. In future work, we plan to
additionally integrate a message broker to support a
wider range of IoT scenarios following our program-

16https://www.docker.com/products/docker-compose
Thttps://www.docker.com/products/docker-swarm
8http://kubernetes.io/

ming model. To improve the performance of our ap-
proach, we also plan to realize our approach in a de-
centralized manner avoiding a centralized component
working as a service bus. Additionally, we plan to in-
vestigate other middleware technologies for enabling
and coordinating the communication between compo-
nents using TOSCA, e.g., by utilizing a tuple space.
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