M Institute of Architecture of Application Systems

Deployment Enforcement Rules
for TOSCA-based Applications

Michael Zimmermann, Uwe Breitenblcher, Christoph Krieger, Frank Leymann

Institute of Architecture of Application Systems,
University of Stuttgart, Germany,
[lastname]@iaas.uni-stuttgart.de

BIBTRX:
@inproceedings{Zimmermann2018 DeploymentEnforcementRules,
Author = {Michael Zimmermann and Uwe Breitenb{\"u}cher and Christoph
Krieger and Frank Leymann},
Title = {{Deployment Enforcement Rules for TOSCA-based Applications}},
Booktitle = {Proceedings of The Twelfth International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE 2018)},
Publisher = {Xpert Publishing Services},
Pages = {114--121},
Month = {September},
Year = {2018}
}

The full version of this publication has been presented at
SECURWARE 2018.
https://www.iaria.org/conferences2018/SECURWARE18.html

© 2018 IARIA. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IARIA.

L5 X O. :z - - L1}
sz Universitat Stuttgart
Rt Germany

https://www.iaria.org/conferences2018/SECURWARE18.html

Deployment Enforcement Rules for TOSCA-based Applications

Michael Zimmermann, Uwe Breitenbiicher, Christoph Krieger, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart,
70569 Stuttgart, Germany
Email: {lastname} @iaas.uni-stuttgart.de

Abstract—In the context of Industry 4.0, gathering sensor data
and using data analysis software can lead to actionable insights,
for example, enabling predictive maintenance. Since developing
these data analysis software requires some special expert knowl-
edge, often external data scientist are charged for that. However,
often the data to be analyzed is of vital importance and thus,
must not leave the company. Therefore, applications developed
and modeled as deployment models by third-parties have to
be enforced to be executed in the local company’s network.
However, manually adapting a lot of these deployment models
in order to meet the company’s requirements is cumbersome,
time consuming and error-prone. Furthermore, some kind of
enforcement mechanism is required to really ensure that these
data security and privacy requirements are fulfilled. Thus, in this
paper, we present an approach considering these issues during
the deployment time of the application. The presented approach
is based on the Topology and Orchestration Specification for
Cloud Applications (TOSCA), an OASIS standard enabling the
description of cloud applications as well as their deployment. The
approach enables the specification as well as the enforcement of
reoccurring and generic requirements and restrictions of TOSCA-
based declarative deployment models, without the need to adapt
or modify these deployment models. The practical feasibility
of the presented approach is validated by extending our open-
source prototype OpenTOSCA, which provides a modeling tool,
a TOSCA Runtime, as well as a self-service portal for TOSCA.

Keywords—Cloud Computing; Application Provisioning; Automa-
tion; TOSCA; Security.

I. INTRODUCTION

In the area of Internet of Things [1] and Industry 4.0 [2],
the gathering of sensor data can lead to actionable insights by
utilizing data analysis software, for instance, enabling predictive
maintenance of cyber-physical manufacturing systems. How-
ever, the development of such analysis software for analyzing
the gathered data requires special expert knowledge, for
example, about implementing machine learning algorithms [3].
But, since companies often do not have this kind of knowledge
and expertise for implementing such complex and domain-
specific analysis software by themselves, they typically charge
external data scientists to build the required software for them.
Unfortunately, because of data security and privacy reasons
as well as different company requirements and policies, often
the gathered data to be analyzed is of vital importance for the
company and must not leave the company and thus, can not be
provided to third-parties, as for example, the data scientists [4].
Therefore, data scientists have to provide their developed
software in a way, that enables the companies to automatically
install and configure the analysis software, required middleware,
and dependencies as well as to execute and link the software
with the sensor data in their local company’s infrastructure [5].

However, the data security and privacy requirements and
policies as well as infrastructure information can differ from
company to company or might be kept secretly as well.
Therefore, third-party companies and data scientists can not
always take these requirements and policies into account when
developing the analysis software and creating the deployment
models enabling the automated provisioning. Thus, the deploy-
ment models need to provide some configuration capabilities
in order to be easily adaptable to the local infrastructure and
environment of the respective company. Furthermore, with
modern applications consisting of complex and heterogeneous
components, it can become difficult to comply security require-
ments, especially when different deployment technologies are
used [6] [7]. However, the enforcement of the defined security
requirements needs to be ensured under all circumstances in
order to secure the data. Regardless of whether the deployment
model is created by a third-party company, an external data
scientist, or even internally. Therefore, some possibility to easily
specify such reoccurring requirements reflecting the company’s
policies as well as an automated enforcement mechanism are
required. However, in a way that separates the modeling of
requirements from the modeling of deployment models, since
this again is a complex task and requires expert knowledge.

In this paper, we tackle the aforementioned issues. We
present our concept of Deployment Enforcement Rules in
order to specify reusable requirements and restrictions for
TOSCA-based declarative deployment models. Furthermore,
our approach ensures the enforcement of these requirements
and restrictions during the provisioning of an application.
Our approach is based on the Topology and Orchestration
Specification for Cloud Applications (TOSCA), an OASIS
standard enabling the description of cloud applications as well
as their deployment [8]. By extending an existing deployment
technology, our approach enables the fully automated deploy-
ment of cloud and IoT applications, while enforcing security
requirements. Our approach is validated by a prototypical
implementation based on the OpenTOSCA Ecosystem [9] [10].

The remainder of this paper is structured as follows:
In Section II, the fundamental concepts of the standard TOSCA
are explained. TOSCA is used within our approach as a
cloud and IoT application modeling language. Afterward, in
Section IIT our approach is motivated by illustrating a TOSCA-
based Industry 4.0 scenario. In Section IV, our approach of
Deployment Enforcement Rules for declarative deployment
models based on TOSCA are explained. In Section V, our
approach is validated by presenting a prototypical implemen-
tation based on the OpenTOSCA Ecosystem. In Section VI,
an overview of related work is given. Finally, Section VII
concludes this paper and presents an outlook on future work.

II. TOPOLOGY AND ORCHESTRATION SPECIFICATION
FOR CLOUD APPLICATIONS

Since our work is based on TOSCA, in this section, the
OASIS standard TOSCA is explained. The TOSCA standard
enables the automated deployment, as well as management of
cloud and IoT applications. In this section, we only briefly
describe the fundamental concepts of TOSCA required to
understand our presented approach. A detailed overview of
TOSCA can be found in the TOSCA Specifications [8] [11],
the TOSCA Primer [12] and an overview by Binz et al. [13].

A. Nodes, Relationships, Types, and Templates

Using TOSCA, the components of an application — software
components as well as infrastructure components — and their
relationships to each other can be described in a standardized
and portable manner. The modeled structure of an application is
defined by so-called Topology Templates. A Topology Template
is a directed graph and consists of nodes and directed edges.
The nodes represent the components of the application and are
called Node Templates. A Node Template could be, for example,
an Apache Tomcat, an Ubuntu virtual machine, or an OpenStack
hypervisor. The Node Templates are connected by the edges,
which are called Relationship Templates and specify the
relations between the Node Templates. A Relationship Template
could define, for example, a “hostedOn”, “dependsOn”, or
“connectsTo” relation between two Node Templates. Thus,
Relationship Templates are specifying the structure of an
application. In order to enable reusability, the semantics of
Node Templates and Relationship Templates are defined by
Node Types and Relationship Types. Node Types as well as
Relationship Types are reusable entities allowing to define
Properties, as well as Management Operations. A NodeType
“OpenStack”, for example, may have defined Properties for
specifying the URL required for accessing a running OpenStack
instance as well as credential information, such as a username
or a password. The Management Operations defined by a
Node Type can be bundled in interfaces and can be invoked in
order to manage the instances of this component. For example,
an “Apache Tomcat” Node Type may define a Management
Operation “install” in order to install the component itself as
well as a Management Operation “deployApplication” in order
to deploy an application on it. Furthermore, a cloud provider
or hypervisor Node Type typically provides Management
Operations in order to create virtual machines (“createVM”)
as well as to terminate virtual machines (“terminateVM”).

B. Implementation Artifacts and Deployment Artifacts

Two kinds of artifacts are defined by TOSCA: (i) Imple-
mentation Artifacts (IAs), as well as (ii) Deployment Artifacts
(DAs). The Management Operations defined by Node Types
are implemented by IAs. An IA itself can be implemented
using various technologies, for instance, as a Web Services
Description Language (WSDL)-based web service, a shell script,
or by using configuration management technologies, such as
Ansible [14] or Chef [15]. Generally, three kinds of IAs can
be distinguished, dependent on the way they are processed: (i)
IAs, that are copied to the target environment of the application
and are executed there, for example, shell scripts. (ii) IAs,
that are deployed and also executed in the TOSCA Runtime
environment (cf. Section II-E), for example, SOAP-based web
services. These TAs typically use remote access protocols, for

instance SSH or SFTP in order to manipulate components,
perform operations on it, and to transfer files on a virtual
machine for example. (iii) IAs, that are just referred within a
Topology Template, since the modeled component is already
running somewhere. Such [As are, for example, a web service
API of a cloud provider or a hypervisor, such as OpenStack.

The TOSCA standard also defines so-called Deployment
Artifacts. In contrast to IAs, DAs implement the business
functionality of a Node Template. For example, the DA of a
PHP application node could be a *.ZIP file, which contains the
PHP files, images, and all other files required for provisioning
the PHP application. Another example of a DA would be a
* WAR file, implementing the java web application of a node.
Deployment Artifacts are typed and may define additional
information, such as the location of the corresponding binary.

C. Management Plans

In order to create or terminate an instance of a modeled
TOSCA-based application or to automate the management,
so-called Management Plans are used. A Management Plan
defines all tasks as well as the order in which these tasks
need to be executed in order to fulfill a specific management
functionality, for example, to provision a new instance of the
modeled application. Therefore, the Management Operations
which are specified by Node Types and are implemented by
the corresponding Implementation Artifacts are invoked by
Management Plans. The TOSCA standard allows to use any
arbitrary process modeling language, but recommends to use
workflow languages such as the Business Process Execution
Language (BPEL) [16] or the Business Process Model and
Notation (BPMN) [17]. There is also a BPMN extension called
BPMNA4TOSCA [18], [19], which is explicitly tailored for
describing TOSCA-based deployment and management plans.

D. Cloud Service Archives

The TOSCA specification also defines a portable as well
as self-contained packaging format, so-called Cloud Service
Archive (CSAR). A CSAR enables to package all aforemen-
tioned artifacts, templates, type definitions, plans, and all
other additionally required files together into one archive,
which technically is a .zip file. Therefore, a CSAR contains
everything required for enabling the automated provisioning and
management of the modeled application. Moreover, because of
the mentioned characteristics, CSARs also enable to easily share
and distribute such modeled TOSCA-based applications, for
example, between colleagues, project partners, or to customers.

E. TOSCA Runtimes

The processing and execution of CSARs is done by
standard-compliant TOSCA Runtimes. However, there are
two different approaches for provisioning a TOSCA-based
application: (i) declaratively as well as (ii) imperatively [20].
Therefore, there are also two types of TOSCA Runtimes. A
TOSCA Runtime can either process a Topology Template
(i) declaratively by interpreting and deriving the actions required
to provision the modeled application directly from the Topology
Template itself. In this case, no Management Plan is required.
Furthermore, a TOSCA Runtime can also process a TOSCA-
modeled application (ii) imperatively by using Management
Plans associated with a Topology Template, specifying which
Management Operations need to be executed in which order.

III. MOTIVATING SCENARIO

In this section, a TOSCA-based motivation scenario is
described. This motivation scenario is used throughout the

entire paper for explaining and demonstrating our approach.

Figure 1 illustrates the motivation scenario as a TOSCA
Topology Template. The modeled application abstractly depicts
an exemplary Industry 4.0 scenario with a data analytics stack
on the left side (PredictionService) and the data to be analyzed
on the right side (MySQLDB) of the illustrated topology.

In Industry 4.0, for example, manufacturing data gathered
during the production process can be analyzed in order to
enable predictive maintenance of cyber-physical manufacturing
systems. The analytics stack in Figure 1 consists of an Apache
Flink Node Template, which is hosted on (specified by using a
“hostedOn” Relationship Template) an Ubuntu virtual machine
Node Template. The virtual machine is managed by the
hypervisor OpenStack, which should be operated locally in
the infrastructure of the company. In general, Apache Flink is
an analytics platform with batch as well as stream processing
capabilities enabling the integration, processing, and analyzing
of data sources, such as MySQL databases. In our motivation
scenario, the MySQL database used to store the generated
analysis data is also running on an Ubuntu virtual machine,
which is hosted on the same OpenStack instance as the
Prediction Service. Since, the Prediction Service needs to
establish a connection to the MySQL database in order to access
and analyze the data, both Node Templates are connected using
a “connectsTo” Relationship Template. Furthermore, required
credentials, for instance, the username (“DBMSUsername”) or
password (“DBMSPassword”) of the database are provided as
Properties. In oder to instantiate an Ubuntu virtual machine, the
OpenStack Node Template exposes Management Operations,
like for example “createVM”. Management Operations can
use Properties, predefined during the modeling time, as input
in order to customize the specification of a component, for
example, the amount of RAM or hard disk capacity in case
of a virtual machine. But also during the provisioning time,
the modeled application can still be customized. This can
be achieved by setting the value of any arbitrary Property to
“getlnput()”. The values of such defined Properties are requested
when the provisioning is instantiated. The advantage of this is
that a parameterizable CSAR containing the Topology Template
and all other required files can be distributed among business
partner or customers. In Figure 1, for example, the username
(“HUsername”), the password (“HPassword”), as well as the
endpoint (“Endpoint”) are defined as “getInput()” in order
to enable the adaption of these Properties according to the
company’s respective infrastructure. Due to the fact, that the
data to be analyzed can contain business-critical information
that has to be protected and must not leave the company, the
OpenStack needs to be operated within the local environment
of the company. Therefore, in our scenario the credentials and
the endpoint of the local OpenStack are not predefined and

need to be provided during provisioning time of the application.

However, the enforcement of the local deployment needs to

be ensured under all circumstances in order to secure the data.

Regardless of whether the Properties are provided manually
when the provisioning of the application is instantiated or
are already predefined in the deployment model. Therefore,
some possibility to specify such requirements and restrictions
regarding the deployment model as well as an enforcement

[(PredictionService) == (MysSQLDB)
LFiIe: PredictionService.py DBName: ProductionDB

[...] Table: machinedata

/ [.]
J
A 4 A\ 4

[(Flink1.2.0) (MySQLDBMS5.7)

Port: 80 MySQLPort: 3306

[) DBMSUsername: MySQLAdmin

DBMSPassword: QJtW8UaMZ7
[..]
.

\ 4 v
(Ubuntul4.04VM)] (Ubuntul14.04VM)]

RAM: 8GB LRAM 8GB

—_—

IP: n/a n/a
SSHCredentials: [...] SSHCredentials: [...]

[(OpenStack)
HUsername: getinput() c——
HPassword: getinput() Rule:
Endpoint: getinput() Local only
=]
=hostedOn === =connectsTo

Figure 1. Analytics functionality as well as the database containing the dataset
to be analyzed should be hosted on the local infrastructure of the company
due to data security and privacy requirements.

mechanism are required to achieve that. Of course, besides the
requirement to restrict the physical location of the provisioning
of the application, other requirements are imaginable as well.
For example, a requirement specifying that some components
are only allowed to be hosted on specific operating systems,
because they might provide some special security features.
Using TOSCA, it is possible to specify such non-functional
requirements, for example, by defining corresponding Policy
Types and Policy Templates. However, they need to be modeled
directly within the Topology Template and are attached to
Node Templates for which the policy needs to be fulfilled.
Therefore, in order to meet the respective requirements, for
every CSAR the Topology Model respectively the TOSCA
definition files must be adapted according to the company’s
business requirements and policies. However, manually adapting
a lot of CSARs in order to meet the same requirements is
cumbersome, time consuming and error-prone. Therefore, an
alternative option enabling the easily specification as well as
enforcement of these reoccurring and generic requirements is
required. The defined requirements should be appendable to
a CSAR without adapting TOSCA definition files, but just by
adding additional files defining the requirements. Also, besides
Whitelisting Rules, defining what is allowed, also Blacklisting
Rules, defining what is forbidden should be supported. In the
following section we explain our idea of generic and reusable
Deployment Enforcement Rules tackling these issues in detail.

Declarative Deployment Model

Deployment Enforcement Rules

ID: PredictionService] ____»V ID: ProductionDataDB
(PythonApp) (MySQLDB)
File: PredictionService.py DBName: ProductionDB
[..] Table: machinedata
\ J .
X, \ J
. - S
\ A L 2 = =
ID: Flink ID: DBMS ID: * ID: *
(Flink1.2.0) (MySQLDBMS5.7) (PythonApp) (MysQLDB)
Port: 80 MySQLPort: 3306
] DBMSUsername: MySQLAdmin
- 7 DBMSPassword: QItW8UaMZ7
* *
\[|) hostedOn hostedOn
v P L 2 e N v v
ID: UbuntuvM1 ID: UbuntuVM2 ID: * ID: *
(Ubuntu14.04VM) (Ubuntu14.04VM) (Ubuntu14.04VM) (OpenStack)
RAM: 8GB RAM: 8GB Endpoint: 0s-company.com
IP: n/a IP: n/a [...]
SSHCredentials: [...] SSHCredentials: [...] AN
bl \[m] J Whitelisting Rule Whitelisting Rule
ID: Hypervisor)
(Openstack) | & T

HUsername: getputy | i

HPassword: getlnput) | E e

Endpoint: getinput() S

[...]

J

Figure 2. Concept of Deployment Enforcement Rules for defining requirements for declarative deployment models that have to be fulfilled to deployment time.

IV. DEPLOYMENT ENFORCEMENT RULES

In this section, our approach of Deployment Enforcement
Rules for specifying requirements regarding the deployment
model are explained. First, an overall presentation of the
Deployment Enforcement Rules concept is given, following the
TOSCA-based motivation scenario described in the previous
section. After that, the full potential of the approach is shown by
combining Whitelisting Rules together with Blacklisting Rules
in order to define more complex requirements and restrictions.

The main goal of our Deployment Enforcement Rules
approach is to enable the creation of generic and reusable rules
for automatically ensuring the fulfillment of specified require-
ments and restrictions regarding the deployment model of an
application. For example, requirements restricting the physical
location where an application is allowed to be provisioned or
requirements restricting that just specific operating systems
are allowed to be used or are forbidden. Furthermore, the
Deployment Enforcement Rules should be specified separately
from the deployment models in order to be easily appendable to
the existing deployment model, but without the need to adapt or
modify the respective deployment models. Thus, no expertise
about the deployment model, the contained components, or the
used deployment technologies are required in order to make
the deployment models compliant to the company’s security
policies. Only the requirements and restrictions that should be
taken into account when provisioning the modeled application
must be known for defining the Deployment Enforcement Rules.
Once defined, these rules can be reused over and over again.

A. Overview of the Approach

The concept of our approach is illustrated in Figure 2,
following the motivation scenario introduced in Section III. On
the left side of the figure, the declarative deployment model
for provisioning the analysis software as well as the database
containing the data to be analyzed is shown. The deployment
model is the same as already described in the previous section,
however now also providing the IDs of the components, such
as “Hypervisor” or “UbuntuVM1”. The Node Types are defined
within the brackets, e.g., “OpenStack” or “Ubuntul4.04VM”.
On the right side of the figure, two exemplary Deployment
Enforcement Rules are illustrated. Since both rules explicitly
are defining what is allowed instead of what is forbidden, both
shown rules are Whitelisting Rules. In the shown example, the
left rule defines, that a component of the type “PythonApp”
is only allowed to be installed on a virtual machine running
Ubuntu 14.04., because this might be the stablest and securest
Ubuntu version available. The rule on the right side defines, that
a MySQL database must be hosted on an OpenStack instance
running on the specified “Endpoint” os-company.com, because
this is the endpoint where the company’s local OpenStack
instance is running. Therefore, the database containing the data
can only be hosted within the company’s local infrastructure and
thus, the data is not leaving the company’s sovereignty. In both
rules, the ID of the components is not defined, which means
that in these cases only the Node Types are taken into account
for deciding if the rules are fulfilled or not, independently of
the ID of the specific Node Template in the deployment model.

creates
Deployment Models

4

Data Scientist /
Deployment Expert

Deployment Model
Repository

creates and maintains
Deployment Rules

Company’s Policy &
Rules Repository Y v

Security Expert

Deployment Engine

Rules Checker

Company'’s Local Environment

Figure 3. Overview of the Deployment Enforcement Rules approach, showing involved roles, models, and components.

Both Deployment Enforcement Rules shown in Figure 2
are defined using a transitive relation (“hostedOn*”). Since the
middleware, dependencies, and other required components are
not necessarily important for the fulfillment of security require-
ments, using the transitive relation enables to only specify the
relevant components in order to define the Deployment Rules.
Regarding the deployment model shown in Figure 2, after
matching the “MySQLDB” node in the Deployment Enforce-
ment Rule with the “ProductionDataDB” in the deployment
model, the “hostedOn” relations in the deployment model are
traced downwards the modeled stack until the “OpenStack”
node is found — or no further “hostedOn” relation can be
found. When the “OpenStack” node is found, it is checked
whether the value of the “Endpoint” property defined in the
Deployment Enforcement Rule is matching the actual value of
the “Endpoint” property in the deployment model or not. Since
properties can already be predefined in the deployment model
(cf. “MySQLPort” in node “DBMS” of Figure 2) or are only
provided when the provisioning is instantiated (cf. “Endpoint” in
node “Hypervisor” of Figure 2), the rules need to be checked for
fulfilling to deployment time, thus, they are called Deployment
Enforcement Rules. To sum up, the use of transitive relations
enable to specify only the components relevant for a specific
Deployment Enforcement Rule and therefore, ease the creation
of Deployment Enforcement Rules as well as increase the
reusability of already existing Deployment Enforcement Rules.

The involved roles, models, and components of the approach
are shown in Figure 3. On the left side, a possibly external
data scientist or deployment expert is shown. This person is
responsible for implementing the application and creating the
deployment model. Possessed deployment models can be stored
within the company’s local environment using the Deployment
Model Repository. On the right side a company’s internal policy
and security expert is shown, which is responsible for creating
and maintaining the Deployment Enforcement Rules according
to the company’s polices and restrictions. Again, the created
rules can be persistently stored in a local Rules Repository.
Deployment models and Deployment Enforcement Rules are
combined beforehand the deployment in order to ensure the
enforcement of the security policies of the company. Therefore,
the Deployment Engine contains a Rules Checker for checking
if the specified Deployment Enforcement Rules are fulfilled.

B. Further Examples, Blacklisting Rules, and Inheritance

In this subsection two more exemplary Deployment En-
forcement Rules are presented. While on the left side of
Figure 4 another Whitelisting Rule is illustrated, on the right
side a Blacklisting Rule is shown. Furthermore, the support of
inheritance for Deployment Enforcement Rules is demonstrated.

[ID: *] [ID: *]
(Application) (Database)

hostedOn* hostedOn*

\ 4 \ 4

(A\;\?S:f:_cz)] [(Opel-:‘[:\:s%ack)]

Region: EU Endpoint:
[.] [..]

Whitelisting Rule

os-company‘com/pubJ

Blacklisting Rule

Figure 4. Exemplary Whitelisting Rule and Blacklisting Rule.

The Whitelisting Rule restricts the deployment of appli-
cations in a way that they are only allowed to be hosted on
an AWS EC2 instance operated in the EU region. The rule
also shows the usage of inheritance in order to create generic
and reusable rules. Here, the “Application” Node Type is used,
which can be seen as a super type for any other application
component, such as the “PythonApp” from Figure 2. Thus, the
approach enables to create very generic rules as well as highly
unique rules, for example, by defining the specific Node Type as
well as providing the ID of the component to be checked. The
Blacklisting Rule on the right side forbids that any database is
hosted on the OpenStack instance running on the “Endpoint” os-
company.com/pub, since this might be an OpenStack instance
accessible from outside the company’s infrastructure and thus,
the data would not be secure there. As shown in this subsection,
depending on the concrete requirement, our approach enables
to define and use Whitelisting as well as Blacklisting Rules.

V. VALIDATION & PROTOTYPE

In this section, we present our implemented prototype sup-
porting the modeling and enforcing of Deployment Enforcement
Rules. The prototype validates the practical feasibility of our
proposed approach presented in the previous section. While
in the first subsection, the general architecture as well as the
components of the prototype are introduced, in the second
subsection details of the concrete implementation are presented.

A. System Architecture

A conceptual architecture of our prototype is illustrated in
Figure 5. The prototype consists of four main components: (i)
the modeling tool, (ii) the repository, (iii) the self-service portal,
and (iv) the deployment engine. By using the modeling tool, a
user can graphically create and maintain deployment models
as well as required reusable elements, such as relations and
component types. Furthermore, the modeling tool also enables
to define and maintain Deployment Enforcement Rules. The
modeling tool is connected with the repository. In the repository,
the created deployment models, relations, component types,
as well as Deployment Enforcement Rules can be persistently
stored. The self-service portal is used to chose an available
deployment model of an application and to instantiate the
deployment of it. Therefore, the self-service portal has access
to the repository. Furthermore, not yet specified property values
(cf. Section III) can be provided here. The deployment engine
consumes deployment models in order to deploy the defined
applications. Moreover, the deployment engine contains the
rules checker component, which is responsible for checking
whether the Deployment Enforcement Rules are fulfilled for
the processed deployment models during the deployment time.

()

Modeling Tool Repository

Self-Service Portal

Deployment Engine

Rules Checker

Figure 5. Architectural overview of the prototype.

B. Prototypical Implementation

Our prototype is based on the OpenTOSCA Ecosystem
and extends the OpenTOSCA Container [9] component. Open-
TOSCA is a standards-based TOSCA Runtime Environment,
consisting of three main components: (i) Winery [10], (ii)
Vinothek [21], and (iii) OpenTOSCA Container. Winery is
a graphical tool for modeling and managing TOSCA Topology
Templates as well as Node Types, Relationship Types and so
on. Furthermore, Winery enables to package the topology as
well as all required files into a CSAR and export it. Technically,
Winery is implemented using Java 1.8 and is available as Web

Application Archive (WAR). From an architectural perspective,
Winery is split into two components: (i) Topology Modeler,
the graphical front end for modeling the topologies and (ii)
Winery Repository, which is the back end of Winery and
enables the persistently storing of all files. Furthermore, since
the same elements of the TOSCA standard are required for
modeling Deployment Enforcement Rules as for modeling
TOSCA Topology Templates, such as Node Template and
Relationship Templates, Winery can also be used to model,
store, as well as to export Deployment Enforcement Rules.

OpenTOSCA Container is the deployment engine of our
prototype. It processes the exported CSARs from Winery,
interprets the contained TOSCA deployment models, deploys
Implementation Artifacts as well as Management Plans, and
provisions the modeled application. In order to validate the
practical feasibility of our proposed approach, we imple-
mented the Rules Checker as an additional component of
the OpenTOSCA Container. The Rules Checker component
is responsible for checking if the Deployment Enforcement
Rules presented in this paper are fulfilled or not. Therefore,
the nodes, relations, properties, as well as the overall structure
of the specified Deployment Enforcement Rules are checked
against the Topology Template that should be provisioned. If the
Deployment Enforcement Rules are fulfilled, the deployment
of the modeled application can be continued. However, if the
Deployment Enforcement Rules are unfulfilled, e.g., due to not
matching endpoint properties in case of a Whitelisting Rule, the
deployment is terminated and a corresponding error message
is displayed. Afterwards, in case of not matching properties,
these properties breaking the rules can be adapted in order
to fulfill the rules and the deployment can be initiated again.
Technically, the OpenTOSCA container as well as the Rules
Checker component are implemented using Java 1.8 and are
based on the OSGi Framework Equinox [22], a Java-based
runtime environment enabling to build modular applications.

Vinothek is a self-service portal, providing a graphical user
interface for enabling the end user to choose an available
application and start the provisioning of it. If information are
missing, such as required endpoint properties, a username, or
a password, the user initiating the provisioning can insert this
missing information here. Vinothek is also implemented using
Java Server Pages (JSPs) and packaged as a WAR and thus,
can be easily deployed on a web container such as Tomcat.

To sum up, we implemented our concepts within the Open-
TOSCA Ecosystem, which already was able to process TOSCA
Topology Templates and provision the modeled applications.
In this work, we further extended the prototype by adding the
additional Rules Checker component to also support the provi-
sioning under consideration of security-related requirements and
restrictions by supporting Deployment Enforcement Rules. All
three mentioned OpenTOSCA components are open-source and
can be obtained from GitHub (https://github.com/OpenTOSCA).

VI. RELATED WORK

In this section, we present related work on our approach
of enforcing company defined data security and privacy
requirements during the deployment time of an application.

Walraven et al. [23] present PaaSHopper, which is a policy-
driven middleware platform for developing and deploying
multi-tenant SaaS applications in multi-PaaS environments.
Based on the current context of stakeholder defined properties

the middleware decides, on which parts in a multi-cloud a
given request is processed or data will be stored. To achieve
policy-awareness, PaasHopper middleware includes a policy-
driven execution layer consisting of the two main components,
the Dispatcher and the Policy Engine. Driven by the current
context of defined policies, the Dispatcher selects an adequate
component in a multi-cloud on which a request is processed
or data will be stored. To do so, the dispatcher uses the
Policy Engine to select a component instance that complies
with the current context of policies. Contrary to our approach,
modeling and enforcing data security and privacy requirements
are restricted to applications that are deployed on PaaS solutions.
Moreover, the restrictions that can be defined are limited to
processing and storage of data, whereas our approach enables
the specification of various requirements and restrictions.

Képes et al. [24] present an approach of enforcing specified
non-functional security requirements during the provisioning
phase of applications. For example, access restrictions or secure
password requirements. These requirements are specified in
form of policies that are attached to the Node Templates of
a TOSCA Topology Template. Subsequent a Policy-Aware
Provisioning Plan Generator transforms a given template into
an executable policy-aware provisioning plan. In order to
provide the required technical activities for the policy-aware
provisioning, the Plan Generator provides a plugin system
for implementing reusable policy aware-deployment logic.
In difference to our loosely coupled deployment rules, their
generated policy-aware provisioning plans are tightly coupled
with the TOSCA Topology Templates they are generated from.

A similar approach to define non-functional security restric-
tions is presented by Blehm et al [25]. They also define security
restrictions by means of policies attached to TOSCA Topology
Templates. In addition they implemented policy specific services
to ensure that the security restrictions are adhered. Again, the
main difference to our approach is that the non-functional
requirements are not separated from the deployment model but
are directly attached to it. Thus, the deployment models need
to be manually adapted to meet the company‘s requirements.

Waizenegger et al. [26] present the IA-Approach and the
P-Approach to implement TOSCA-based security policy en-
forcement. The IA-Approach extends IAs by implementing the
already existing Management Operations again with additional
policy enforcing steps. The P-Approach extends the Plan
required for provisioning the application with additional policy
enforcing activities. Unlike to our approach, in their approach
the policy enforcing elements are not separated from the
deployment model but are directly attached to IAs or Plans.

Fischer et al. [27] present an approach to ensure compliance
of application deployment models during their design time on
the basis of the TOSCA standard. Similar to our approach,
they aim to separate concerns about the knowledge base of a
company’s compliance requirements and the technical expertise
of modeling applications, so that compliance experts can define
compliance rules that can then be used to ensure compliance
in deployment models. To achieve this, they introduce the
concept of Deployment Compliance Rules which provide
a means to ensure that deployment structures are conform
with a company’s compliance requirements. A deployment
compliance rule consists of an Identifier graph to identify a
compliance-relevant area in application deployment models and
a Required Structure graph to define the allowed structure for

the given compliance-relevant area. Unlike to our approach, the
compliance checking of the deployment model is done during
their design time. Moreover, Deployment Compliance Rules
only allow to model allowed deployment structures and do
not provide a means to define structures that are explicitly not
allowed in a deployment model. Furthermore, the concept of
transitive relations to ensure high reusability as well as faster
modeling of the rules is not supported in their approach.

There are different approaches to specify and enforce
certain requirements and restrictions in business process models.
Fellmann and Zasada [28] conduct a literature review to provide
an overview of the state-of-the-art approaches for mapping a
company’s compliance rules to business process models. Koetter
et al. [29] present the concept of a Compliance Descriptor
that links laws, regulations, and company intern restrictions
to their technical implementation. Thereby, a Compliance
Descriptor provides a means to consider the phases design-
time, deployment and run-time of a business process life cycle.
Depending on the phase different technologies are used for
the technical implementation of the compliance requirements.
Linear temporal logic (LTL) is used for design-time rules,
TOSCA for requirements during the deployment phase and
ProGoalML for run-time monitoring. Schleicher et al. [30]
introduce the concept of Compliance Domains which can be
used to model data restrictions for runtime infrastructures, such
as different types of cloud environments or local data centers.
In their approach, areas of business processes, modeled in
Business Process Model and Notation (BPMN), can be marked
by compliance experts with Compliance Domains that contain
certain service level agreements and compliance rules that needs
to be met. Based on this information, a graphical business
process modeling tool can enforce the defined requirements
during design time and notify the modeler if a selected runtime
environment or data that enters a compliance domain violates
them. For the most part, their work focuses on the restriction of
data flows on the level of business process models, while our
approach provides a method for enforcing security and privacy
requirements on the level of declarative deployment models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented our approach of Deployment
Enforcement Rules enabling the specification as well as the
automated enforcement of reoccurring requirements and restric-
tions of declarative deployment models. For demonstrating
the approach we used the OASIS standard Topology and
Orchestration Specification for Cloud Applications (TOSCA).
The approach allows to specify the Deployment Enforcement
Rules separately from the deployment models and without the
need to adapt or modify any deployment model at all. We
showed, that by using transitive relations, only the relevant
components need to be specified within a rule, which results
in a high reuseability of the Deployment Enforcement Rules.
Furthermore, we showed that the approach enables to define
Whitelisting Rules, which specify what is allowed as well as
Blacklisting Rules, which specify what is forbidden. Thus,
depending on the requirements and circumstances the rules
can be used very flexible. A validation of our approach is
provided by a prototypical TOSCA-based implementation. In
the future, we plan to extend our Deployment Enforcement
Rules approach by also taking other TOSCA-elements into
account, e.g., Deployment Artifacts attached to Node Templates.

ACKNOWLEDGMENT
This work was partially funded by the project SePiA.Pro

(0OIMD16013F) of the BMWi program Smart Service
World and the German Research Foundation (DFG) project
ADDCompliance (314720630).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(1]

[12]

[13]

[14]

REFERENCES

L. Atzori, A. lera, and G. Morabito, “The Internet of Things: A Survey,”
Computer Networks, vol. 54, no. 15, 2010, pp. 2787-2805.

M. Hermann, T. Pentek, and B. Otto, “Design Principles for Industrie 4.0
Scenarios,” in Proceedings of the 49" Hawaii International Conference
on System Sciences (HICSS). IEEE, 2016, pp. 3928-3937.

G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi,
“Machine Learning for Predictive Maintenance: A Multiple Classifier
Approach,” Transactions on Industrial Informatics, vol. 11, no. 3, 2015,
pp. 812-820.

M. Falkenthal et al., “Towards Function and Data Shipping in Manufac-
turing Environments: How Cloud Technologies leverage the 4" Industrial
Revolution,” in Proceedings of the 10t Advanced Summer School on
Service Oriented Computing, ser. IBM Research Report. IBM Research
Report, Sep. 2016, pp. 16-25.

M. Zimmermann, U. Breitenbiicher, M. Falkenthal, F. Leymann, and
K. Saatkamp, “Standards-based function shipping how to use tosca for
shipping and executing data analytics software in remote manufacturing
environments,” in Proceedings of the 2017 IEEE 21 International
Enterprise Distributed Object Computing Conference (EDOC 2017),
2017, pp. 50-60.

U. Breitenbiicher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-Aware Provisioning of Cloud Applications,” in Proceedings of
the Seventh International Conference on Emerging Security Information,
Systems and Technologies (SECURWARE 2013). Xpert Publishing
Services, Aug. 2013, pp. 86-95.

U. Breitenbiicher et al., “Policy-Aware Provisioning and Management
of Cloud Applications,” International Journal On Advances in Security,
vol. 7, no. 1&2, 2014, pp. 15-36.

OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0, Organization for the Advancement of Structured
Information Standards (OASIS), 2013.

T. Binz et al., “OpenTOSCA — A Runtime for TOSCA-based Cloud
Applications,” in Proceedings of the 11" International Conference on
Service-Oriented Computing (ICSOC 2013). Springer, Dec. 2013, pp.
692-695.

O. Kopp, T. Binz, U. Breitenbiicher, and F. Leymann, “Winery — A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11" International Conference on Service-Oriented Computing
(ICSOC 2013). Springer, Dec. 2013, pp. 700-704.

OASIS, TOSCA Simple Profile in YAML Version 1.0, Organization for
the Advancement of Structured Information Standards (OASIS), 2015.
OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

T. Binz, U. Breitenbiicher, O. Kopp, and F. Leymann, TOSCA: Portable
Automated Deployment and Management of Cloud Applications, ser.
Advanced Web Services. Springer, Jan. 2014, pp. 527-549.

Red Hat, Inc., “Ansible Official Site.” [Online]. Available: https:
/Iwww.ansible.com [retrieved: July, 2018]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Opscode, Inc., “Chef Official Site.” [Online]. Available:

/Iwww.opscode.com/chef [retrieved: July, 2018]

OASIS, Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, Organization for the Advancement of Structured Information
Standards (OASIS), 2007.

OMG, Business Process Model and Notation (BPMN) Version 2.0,
Object Management Group (OMG), 2011.

O. Kopp, T. Binz, U. Breitenbiicher, and F. Leymann, “BPMN4TOSCA:
A Domain-Specific Language to Model Management Plans for Com-
posite Applications,” in Proceedings of the 4" International Workshop
on the Business Process Model and Notation (BPMN 2012). Springer,
Sep. 2012, pp. 38-52.

O. Kopp, T. Binz, U. Breitenbiicher, F. Leymann, and T. Michelbach,
“A Domain-Specific Modeling Tool to Model Management Plans for
Composite Applications,” in Proceedings of the 7" Central European
‘Workshop on Services and their Composition, ZEUS 2015. CEUR
Workshop Proceedings, May 2015, pp. 51-54.

U. Breitenbiicher et al., “Combining Declarative and Imperative Cloud
Application Provisioning based on TOSCA,” in International Conference
on Cloud Engineering (IC2E 2014). IEEE, Mar. 2014, pp. 87-96.

U. Breitenbiicher, T. Binz, O. Kopp, and F. Leymann, “Vinothek - A
Self-Service Portal for TOSCA,” in Proceedings of the 6" Central-
European Workshop on Services and their Composition (ZEUS 2014).
CEUR-WS.org, Feb. 2014, Demonstration, pp. 69-72.

Eclipse Foundation, Inc., “Equinox — The Eclipse Foundation.”
[Online]. Available: http://www.eclipse.org/equinox/ [retrieved: July,
2018]

S. Walraven, D. Van Landuyt, A. Rafique, B. Lagaisse, and W. Joosen,
“Paashopper: Policy-driven middleware for multi-paas environments,”
Journal of Internet Services and Applications, vol. 6, no. 1, 2015, p. 2.

http:

K. Képes, U. Breitenbiicher, M. P. Fischer, F. Leymann, and M. Zimmer-
mann, “Policy-Aware Provisioning Plan Generation for TOSCA-based
Applications,” in Proceedings of The Eleventh International Conference
on Emerging Security Information, Systems and Technologies (SECUR-
WARE). XpertPublishing Services, September 2017, pp. 142-149.

A. Blehm et al., “Policy-Framework-Eine Methode zur Umsetzung von
Sicherheits-Policies im Cloud-Computing.” in GI-Jahrestagung, 2014,
pp. 277-288.

T. Waizenegger et al., “Policy4TOSCA: A Policy-Aware Cloud Service
Provisioning Approach to Enable Secure Cloud Computing,” in On
the Move to Meaningful Internet Systems: OTM 2013 Conferences.
Springer, Sep. 2013, pp. 360-376.

M. P. Fischer, U. Breitenbiicher, K. Képes, and F. Leymann, “Towards an
Approach for Automatically Checking Compliance Rules in Deployment
Models,” in Proceedings of The Eleventh International Conference on
Emerging Security Information, Systems and Technologies (SECUR-
WARE). Xpert Publishing Services (XPS), 2017, pp. 150-153.

M. Fellmann and A. Zasada, “State-of-the-art of business process
compliance approaches,” in 22" European Conference on Information
Systems, (ECIS), June 2014, pp. 1-17.

F. Koetter, M. Kochanowski, A. Weisbecker, C. Fehling, and F. Leymann,
“Integrating Compliance Requirements across Business and IT,” in
Enterprise Distributed Object Computing Conference (EDOC), 2014
IEEE 18™ International. IEEE, 2014, pp. 218-225.

D. Schleicher et al., “Compliance Domains: A Means to Model Data-
Restrictions in Cloud Environments,” in Enterprise Distributed Object
Computing Conference (EDOC), 2011 15" European Conference on
Information Systems IEEE International. IEEE, 2011, pp. 257-266.

