
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

leymann@iaas.uni-stuttgart.de

Towards a Pattern Language for Quantum Algorithms

Frank Leymann

@inproceedings{Leymann-QuantumAlgorithms,
author = {Leymann, Frank},
title = {Towards a Pattern Language for Quantum Algorithms},
booktitle = {Quantum Technology and Optimization Problems},
year = {2019},
pages = {218--230},
doi = {10.1007/978-3-030-14082-3_19},
series = {Lecture Notes in Computer Science (LNCS)},
volume = {11413},
publisher = {Springer International Publishing},
address = {Cham}

}

:

Institute of Architecture of Application Systems

© 2019 Springer International Publishing.
The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-14082-3_19

https://doi.org/10.1007/978-3-030-14082-3_19

Towards a Pattern Language for Quantum Algorithms

Frank Leymann[0000-0002-9123-259X]

IAAS, University of Stuttgart,

Universitätsstr. 38, 70569 Stuttgart, Germany  
Frank.Leymann@iaas.uni-stuttgart.de

Abstract. Creating quantum algorithms is a difficult task, especially for
computer scientist not used to quantum computing. But quantum algorithms
often use similar elements. Thus, these elements provide proven solutions to
recurring problems, i.e. a pattern language. Sketching such a language is a step
towards establishing a software engineering discipline of quantum algorithms.

Keywords: Quantum algorithms, Pattern Languages, Software Engineering.

1. Introduction

1.1. Patterns and Pattern Languages

There is a significant difference in how quantum algorithms are presented and
invented, and the way how traditional algorithms are build. Thus, computer scientists
and software developers used to solve classical problems need a lot of assistance
when being assigned to build quantum algorithms.

To support and guide people in creating solutions in various domains, pattern
languages are established. A pattern is a structured document containing an abstract
description of a proven solution of a recurring problem. Furthermore, a pattern points
to other patterns that may jointly contribute to an encompassing solution of a complex
problem. This way, a network of related patterns, i.e. a pattern language, results.

This notion of pattern and pattern language has its origin in [1]. Although invented
to support architects in building houses and planning cities, it has been accepted in
several other domains like pedagogy, manufacturing, and especially in software
architecture (e.g. [13]).

In this paper, we lay the foundation for a pattern language for quantum algorithms.
The need for documenting solutions for recurring problems in this domain can be
observed in text books like [19, 21] that contain unsystematic explanations of basic
„tricks“ used in quantum algorithms. Our contribution is to systematize this to
become a subject of a software engineering discipline for quantum algorithms.

!2

1.2. Structure of a Pattern Document

A document specifying a pattern within a certain domain follows a fixed structure.
While this structure may vary from domain to domain, many elements are in
common, i.e. independent of the domain:

Each pattern has a name. This name should be descriptive, identifying the problem
to be solved.

The intend of the pattern briefly describes the goal to be achieved with the solution
described by the pattern.

An icon represents the pattern visually, e.g. as a mnemonic. While the gate model
makes heavy use of icons (as quantum gates and their wiring), other models don’t;
pattern icons may add a visual aspect to such models. Even for the gate model,
patterns often abstract gates and their compositions, i.e. pattern icons are a more
abstract representation of parts of an algorithm.

The problem statement concisely summarizes the problem solved by the pattern.
Based on this, the reader can immediately decide whether the pattern is relevant for
the problem at hand to be solved.

The context describes the situation or the forces, respectively, that led to the
problem. It may refer to other patterns already applied.

The solution is the most important element of the pattern: it specifies in an abstract
manner how to solve the problem summarized in the problem statement. The problem
statement together with the solution is the underpinning of the pattern. Variants of
solutions may be described depending on different flavors of the context.

The know uses section refers to algorithms that make use of the pattern. It confirms
that the problem is recurring and that the presented solution is proven.

Other patterns related to the current one are referenced in the next element. These
references link the individual patterns into a pattern language.

1.3. Overview

The patterns we propose in section 2 are derived from algorithms based on the gate
model. This is not a restriction in principle, because patterns based on other models
may be added in future. Furthermore, patterns based on one model may be
transformed into equivalent patterns of other model (e.g. the gate model is know to be
equivalent to the measurement-based model [16]). Finally, we briefly indicate in
section 3 how patterns may be used in developing quantum algorithms.

2. Patterns for Quantum Algorithms

In this section we describe an initial set of basic patterns and their relations. Note, that
this pattern language is far from being encompassing, i.e. it is expected that this
pattern language evolves over time.

!3

2.1. Initialization (aka State Preparation)

Intend: At the beginning of a quantum algorithm, the quantum register manipulated
by the algorithm must be initialized. The initialization must be as easy as possible,
considering requirements of the steps of the algorithm.

Context: An algorithm typically requires input representing the parameters of the
problem to be solved. Most quantum algorithms encode this input as part of the
unitary transformations making up the quantum algorithm. E.g. if the overall
algorithm is U=Un∘…∘Ui∘Ui-1∘…∘U1, then U1,…,Ui-1 are operators that furnish the
register to hold the parameters of the problem solved by the following operators Ui,
…,Un. However, the initial state operated on by Ui-1∘…∘U1 must be set; Ui-1∘…∘U1 is
called state preparation [25].

Solution: Often, the register will be initialized as the unit vector |0…0>. This
register may have certain ancilla bits or workspace bits distinguished that are used to
store intermediate results, to control the processing of the algorithm etc..

For example, the register is initialized with |0>⊗n |0>⊗m (where the second part of
the register consists of workspace bits) in order to compute the function table of the
Boolean function f : {0,1}n → {0,1}m.

An initialization with |0>⊗n |1> supports to reveal membership in a set which is
defined based on an indicator function (used to solve decision problems, for example)
by changing the sign of the qbits representing members of this set.

Based on these simple initializations, more advanced states can be prepared. For
example, [7] discusses several algorithms to load classical bits into a quantum
register. [25] presents how to load a complex vector, [8] how to load a real vector
based on corresponding data structures; thus, a matrix can be loaded as a set of
vectors [18].

Known uses: All algorithms must be initialized somehow.

Next: Often, after initialization the register must be brought into a state of uniform
superposition. Function tables require the initializations discussed here. An initialized
register may become input to an oracle.

2.2. Uniform Superposition

Intend: Typically, the individual qbits of a quantum register have to be in multiple
states at the same time without preferring any at these states at the beginning of the
computation.

How can the input of a quantum register be initialized in a straight-
forward manner, considering immediate requirements of the following
steps of the quantum algorithm?�

Initialisation

0?1?

!4

Context: One origin of the power of quantum algorithms stems from quantum
parallelism, i.e. the ability of a quantum register to represent multiple values at the
same time. This is achieved by bringing (a subset of) the qbits of a quantum register
into superposition. Many algorithms assume that at the beginning this superposition is
uniform, i.e. the probability of measuring any of the qbits is the same.

Solution: Uniform superposition is achieved by initializing the quantum register as
the unit vector ! and applying the Hadamard transformation afterwards:

!

In case the quantum register includes ancilla bits or workspace bits in addition to the
computational basis, the computational basis is brought into superposition as
described. The other bits may be brought into superposition themselves or not. This is
achieved by using a tensor product H⊗n⊗U, where H⊗n operates on the computational
basis and U operates on the other bits (e.g., U=I in case the other bits are not brought
into superposition).

Known uses: Most algorithms make use of uniform superposition.

Next: Creating uniform superposition makes use of initialization. A register in
uniform superposition may be entangled. A register in uniform superposition may be
input to an oracle.

2.3. Creating Entanglement

Intend: A strong correlation between qbits of a quantum register is often needed in
order to enable algorithms that offer a speedup compared to classical algorithms.

Context: Entanglement is one of the causes of the power of quantum algorithms (see
[5], although entanglement is not a necessity [3]). A quantum algorithm showing
exponential speedup requires entanglement [17]. Thus, after initialization of a
quantum register it should often be entangled for its further processing.

Solution: Several approaches can be taken to create an entangled state. For example,
assume a binary function f:{0,1}n →{0,1}m and the corresponding unitary operation

! , ! .

How can an equally weighted superposition of all possible states of the
qbits of a quantum register be created?�

Equally Weighted
Superpostion

…

0...0

H⊗n 0
⊗n() = 1

2n
x

x=0

2n−1

∑

How can an entangled state be created?
�

Entaglement

U f : 0,1{ }n+m → 0,1{ }n+m U f x, y() = x, y⊕ f (x)

!5

Then, the following state is entangled.

! .

With f=id it is Uid = CNOT, which shows that CNOT((H⊗I)(|0>⊗|0>)) is entangled.

Known uses: Many algorithms make use of entanglement.

Next: Typically, initialization precedes the creation of entanglement. A function table
results from the above creation of entanglement based on Uf.

2.4. Function Table

Intend: Some problems can be reduced to determining global properties of a
function. For that purpose, the corresponding function table should be computed
efficiently and made available for further analysis.

Context: In order to compute the function table of a function

f : {0,1}n → {0,1}m ,

a classical algorithm requires to invoke the function for each value of the domain.
Quantum parallelism allows to compute the values of such a finite Boolean function
as a whole in a single step. This can be used to speedup finding global properties of
the corresponding function. Note, that in case m=1 the Boolean function is often an
indicator function used to determine solutions of a decision problem.

Solution: The quantum register is split into the computational basis (the domain of
the function f) consisting of n qbits x, and a workspace consisting of m qbits y, which
is used to hold the values of f. Based on this, the unitary operator

Uf |x,y> = |x, y ⊕ f(x)>

is defined.
After initializing the register with |0>⊗n|0>⊗m, the computational basis is brought

into uniform superposition via H⊗n leaving the workspace unchanged, and then the
operator Uf is applied only once resulting in the function table:

!

In case of an indicator function f (e.g. if f is representing a decision problem), the
register is initialized with |0>⊗n|1>. Uniform superposition of the complete register is
furnished by H⊗n+1. Applying Uf finally results in

U f H
⊗n⊗ I⊗m() 0 ⊗ 0()

How can a function table of a finite Boolean function be computed?

�

Function Table

x f(x)

0
⊗n

0
⊗m

 !
H⊗n⊗I! 1

2n
x

x
∑

⎛

⎝⎜
⎞

⎠⎟
⊗ 0

⊗m
 !

U f! 1

2n
x f x()

x
∑

!6

!

Thus, members of the computational basis indicate by their sign whether they are
detected by the indicator function (minus sign) or not (plus sign) - aka „phase
kickback“.

Known uses: The algorithms of Deutsch, Deutsch-Jozsa, Grover, Shor and others
make use of function tables.

Next: Function tables require initialization discussed before. Uniform superposition
of the computational basis is established before the function table is computed.
Amplitude amplification is a generalization of function tables. The computation is
performed by an oracle. Often, uncompute is required to continue processing.

2.5. Oracle (aka Black Box)

Intend: Quantum algorithms often need to compute values of a function f without
having to know the details how such values are computed.

Context: Divide-and-Conquer is a well-established method in computer science to
simplify the solution of complex problems. The concept of an oracle (or black box) as
a granule of reuse with hidden internals supports this method for building quantum
algorithms.

Solution: Oracles are used in problem specific manners. [14] discusses various kinds
of oracles. Limitations of using oracles are discussed in [26].

Known uses: The algorithms of Deutsch, Deutsch-Jozsa, Bernstein-Vazirani, Simon,
Grover and others make use of oracles. See [20] for further usages.

Next: An oracle often requires to uncompute its result state, and assumes a properly
prepared register as input (initialization).

2.6. Uncompute (aka Unentangling aka Copy-Uncompute)

Intend: Often, entanglement of the computational basis of a quantum register with
temporary qbits (ancilla, workspace) has to be removed to allow proper continuation
of an algorithm.

0
⊗n

1 !
H⊗n⊗H! 1

2n
x

x
∑

⎛

⎝⎜
⎞

⎠⎟
⊗ − !

U f!
= 1

2n
−1() f (x)

x
x=0

2n−1

∑
⎛

⎝
⎜

⎞

⎠
⎟ ⊗ −

How can the computation of another quantum algorithm be reused?

�

Oracle / Black Box

?

x f(x)

How can entanglement be removed that resulted from a computation?

�

Uncomute

f → →

!7

Context: A computation often needs temporary qbits, and at the end of the
computation these qbits are entangled with the computational basis. This hinders
access to the actual result of the computation, especially if the computation was used
just as an intermediate step within an algorithm.

For example, if the computation should produce ! but in fact it produces

! , the temporary qbits ! can not be simply eliminated unless

! ,

i.e. unless the computational basis and the temporary qbits are separable.

Solution: Most algorithms map |x>|0> |0> to |x>|g(x)>|f(x)> to compute a function f
[8]. I.e. the second qbits represent a workspace that contains garbage g(x) at the end
of the computation. This garbage has to be set to |0> to allow for proper continuation,
especially if future parts of the algorithm expects the workspace to be initialized again
by |0>.

More precisely, assume the computation Uf resulted in

! ,

i.e. the garbage state is ! . Now, a fourth register initialized to |0> is

added, and CNOT is applied (bitwise) to this fourth register controlled by the third
register: this copies f(x) to the fourth register and ! results.

Next, ! is applied to the first three registers, giving |x>|0>|0>|f(x)>. Then, SWAP is

applied to the last two registers leaving |x>|0>|f(x)>|0>. This now allows to discard
the last register leaving |x>|0>|f(x)> as wanted (more details in [8]). [23] discusses
how to use uncompute in several situations.

Known uses: Deutsch-Joza, the HHL algorithm [15], quantum walks, realizations of
classical circuits as quantum algorithms etc make use of uncompute.

Next: An oracle often produces a state that is an entanglement between the
computational basis and some temporary qbits, thus requires uncompute. A function
table may be seen as a special case of an oracle.

2.7. Phase Shift

Intend: In a given register certain qbits should be emphasized.

Context: When an algorithm is applied iteratively, and each iteration is assumed to
improve the solution, those parts of the solution that did improve should be indicated.
A phase shift can be such an indication.

α i ϕ i∑
α i ϕ i∑ ψ i ψ i

α i ϕ i∑ ψ i = α i ϕ i∑()⊗ ψ i

x 0 0 !

U f!
ay x y f (x)
y∑

g(x) = ay yy∑

ay x y f (x)
y∑ f (x)

U f
−1

How can important aspects of a state been efficiently distinguished?

�

Phase Shift

!8

Solution: The following operator ! can be efficiently implemented (see [24]) in
terms of number of gates used:

!

This operator shifts the qbits in G ⊆ {0,…,N-1} (the qbits improved: „good set“) by
phase 𝜑 and leaves the other qbits unchanged. There is even a variant of the operator
that shifts the phases of the qbits in the good set by different values, i.e. 𝜑=𝜑(x).

Known uses: The algorithms of Grover, Deutsch-Jozsa etc. use a phase shift.

Next: A function table based on an indicator function is a phase shift, with G as the
set of base vectors qualifying under the indicator function. An amplitude
amplification makes use of two phase shifts. A phase shift is used as an oracle.

2.8. Amplitude Amplification

Intend: Based on an approximate solution, the probability to find the precise solution
should be increased from run to run of an algorithm U.

Context: The function table of an indicator function f may list all solutions of a
problem (i.e. f(x) = 1 ⇔ x solves the problem). By measuring the corresponding state,
a solution is found with a certain probability. But measuring destroys the state, i.e. if a
solution is not received by measurement, the computation has to be performed again
to support another new measurement.

Thus, a mechanism is wanted that doesn’t need measurements and that allows to
continue with the state achieved in case a solution is not found.

Solution: State is transformed in such a way that values of interest get a modified
amplitude such that they get a higher probability of being measured after a couple of
iterations [4].

The phase shift! changes the sign of the phase of elements in G, the phase shift

! changes the sign of ! (the start value of the iteration) and leaves the other
elements unchanged. Let U be the algorithm for computing approximate solutions
(not using any measurements). Define the following is unitary operation:

!

If U is an algorithm that succeeds with a solution with probability t, 1/t iterations are
required on the average to find a solution. U|0> is assumed to have a non-zero

SG
ϕ

ax x
x=0

N−1

∑ !
SG
ϕ
!

eiϕax x
x∈G
∑ + ax x

x∉G
∑

How can the probability of finding a solution be inreased?
�

Amplitude Amplification

SG
π

S0
π 0

Q = −US0
πU −1SG

π

!9

amplitude in G, otherwise no speedup can be achieved. If U has this property, Q will

produce a solution within ! iterations - which is a quadratic speedup. The

number of iterations to be performed with Q is about
!

where PG is the projection onto the subspace spanned by G.

Known uses: The algorithms of Grover and Simons, for example, make use of
amplitude amplification. Also, the HHL algorithm for solving linear equations [15]
uses this pattern. The state preparation algorithm of [25] uses amplitude amplification
too. [4] discusses more algorithms making use of it.

Next: Part of the unitary operation Q is the function table ! , which is also a special
case of a phase shift. Amplitude amplifications are used as oracles.

2.9. Speedup via Verifying

Intend: Verifying whether a claimed solution is correct or not is sometimes simple.
Such verifications may then be used to speedup solving a corresponding problem.

Context: Often, it is hard to find a solution of a problem, but verifying whether a
claimed solution is correct is simple. For example, factorizing a number is hard, but
multiplying numbers is simple. Thus, when a given list of prime numbers is claimed
to be the factorization of a certain number, multiplying the prime numbers and
comparing the result with the certain number is a simple way of verification.

Solution: Solving certain problems can be speedup by first listing all possible
solutions, then scanning through the list and verifying whether the current member of
the list at hand is a solution or not.

The verification of the possible solutions is done via an oracle. Scanning is done by
means of the Grover algorithm, thus, O(√N) invocations of the Oracle function
determines the solution. A prerequisite of this pattern is that solutions can be detected
by means of oracle.

Know Uses: Cracking keys, finding Hamiltonian cycles, solving 3-SAT, the Traveling
Salesman Problem etc can be approached this way.

Next: The verification is performed as an oracle.

O 1/ t()
π
4
⋅ 1
PGU 0

SG
π

How can a speedup be achieved when verifying a solution is simple?

�

Speedup via Verifying

✔|✖
✌

!10

2.10. Quantum-Classic Split

Intend: The solution of a problem is often not achieved by only using a quantum
computer. Thus, the solution is performed partially on a classical computer and
partially on a quantum computer, and both parts of the solution interact.

Context: Some quantum algorithms inherently require pre- or post-processing on a
classical device, resulting in a split of the solution into a classical part and a quantum
part.

Also, if a quantum computer has a low number of qubits or its gates are noisy, a
solution of a problem may have to be separated into a part executed on a quantum
computer and a part executed on a classical computer [22].

Solution: The sheer fact that a split of the algorithms may be done is important. How
such a split is applied is problem dependent.

Know Uses: Shor's algorithm or Simon’s algorithm inherently make use of classical
post-processing. The algorithm in [11] to solve combinatorial optimization problems
uses classical pre-processing. The algorithm of [2] uses a split into a quantum part of
the solution and a classical part to enable factorization on NISQ devices.

Next: Data is passed from the classical part of the solution to the quantum part by
proper initialization.

3. Using Patterns

3.1. Patterns in Software Engineering

In software engineering, pattern languages exist in a plethora of domains like object
orientation, enterprise integration, cloud computing etc.. Typically, these pattern
languages are delivered as books or on web pages. Software engineers determine their
problem to solve and find a corresponding entry point into the pattern language. This
first entry pattern links to other patterns that might be helpful in the problem context,
if applicable these patterns are inspected and used too, their links are followed etc..
This way, a subgraph (aka „solution path“ [27]) of the pattern language is determined
that conceptually solves a complex problem. Next, the abstract solutions of the
patterns of this subgraph have to be implemented (i.e. turned into concrete solutions)
so that they can be executed in a computing environment.

To make this process more efficient, a pattern repository can be used [12]: in
essence, a pattern repository is a specialized database that stores pattern documents
and manages the links between them. It allows to query the database to find
appropriate patterns (e.g. to determine the entry pattern corresponding to a problem),

How can a solution be split between a quantum computer and a
classical computer?

�

Quantum-Classic Split

?

!11

supports browsing the content of each pattern document, and enables navigating
between patterns based on the links between them.

In practice, patterns of several domains are needed to solve a complex problem [9].
For example, building an application for a cloud environment based on microservices
that must fulfill certain security requirements leans on the corresponding three pattern
languages (for cloud, microservices, security). For this purpose, patterns of a pattern
language of a certain domain may point to patterns of another domain.

Similarly, the pattern language for quantum algorithm can be represented in a
pattern repository. The corresponding patterns may be linked with patterns from
concrete quantum programming languages to support the programming of the
patterns.

3.2. Abstract Solutions and Concrete Solutions

Patterns describe abstract solutions, independent of any concrete implementations.
The advantage is that such abstract solutions fit in unforeseen contexts (new quantum
hardware, new programming environments,…). But patterns represent proven
solutions, i.e. by definition they are abstracted from formerly existing concrete
solutions. These concrete solutions are forgotten during the act of abstraction.

By retaining (or creating) concrete solutions, making them available, and linking
them with those patterns that abstract them, fosters reuse of implementations and
speeds up solving problems [9]. Navigating through such enriched pattern languages
allows to „harvest“ concrete solutions and „glue“ them together into an aggregated
solution of the overall problem [10].

4. Outlook

We intend to grow the proposed pattern language, and make it available in our pattern
repository PatternPedia [12]. In parallel, concrete implementations of the patterns in
quantum languages like QASM [6] are considered, and these implementations will be
linked to the corresponding patterns. Next, we want to evaluate the usefulness of the
pattern language based on practical use cases.

Acknowledgement: I am very grateful to Johanna Barzen and Michael Falkenthal for
the plethora of discussions about pattern languages and their use in different domains.

References

1. Alexander, Ch.; Ishikawa, S; Silverstein, M: A Pattern Language – Towns Buildings
Construction. Oxford University Press, 1977.

2. Anschuetz, E.R.; Olson, J.P.; Aspuru-Guzik, A.; Cao, Y.: Variational Quantum Factoring.
arXiv:1808.08927 (2018).

3. Biham, E.; Brassard, G.; , Kenigsberg, D.; Mor, T.: Quantum computing without
entanglement. Theoretical Computer Science 320 (2004).

4. Brassard, G.; Hoyer, P.; Mosca, M.; Tapp, A.: Quantum Amplitude Amplification and
Estimation. arXiv:quant-ph/0005055v1, 2000.

!12

5. Bruß, D.; Macchiavello, C.: Multipartite Entanglement in Quantum Algorithms. Phys.
Rev. Vol. 83, Iss. 5, 2011.

6. Coles, P.J. et al: Quantum Algorithm Implementations for Beginners. CoRR abs/
1804.03719 (2018).

7. Cortese, J.A.; Braje, T.M.: Loading Classical Data into a Quantum Computer. arXiv:
1803.01958v1 (2018).

8. Dervovic, D.; Herbster, M.; Mountney, P.; Severini, S.; Usher, N.; Wossnig, L.: Quantum
linear systems algorithms: a primer. arXiv:1802.08227v1 (2018).

9. Falkenthal, M.; Barzen, J.; Breitenbücher, U.; Fehling, Ch.; Leymann, F.; Hadjakos, A.;
Hentschel, F.; Schulze, H.: Leveraging Pattern Applications via Pattern
Refinement. Proceedings of Pursuit of Pattern Languages for Societal Change - The
Workshop. Krems, 2016.

10. Falkenthal, M.; Leymann, F.: Easing Pattern Application by Means of Solution
Languages. Proceedings PATTERNS 2017.

11. Farhi, E.; Goldstone, J.; Gutmann, S.: A Quantum Approximate Optimization Algorithm.
arXiv:1411.4028 (2014).

12. Fehling, Ch.; Barzen, J.; Falkenthal, M.; Leymann, F.: PatternPedia - Collaborative
Pattern Identification and Authoring. Proceedings of Pursuit of Pattern Languages for
Societal Change - The Workshop. Krems, 2014.

13. Fehling, Ch.; Leymann, F.; Retter, R.; Schupeck, W.; Arbitter, P.: Cloud Computing
Patterns. Springer, 2014.

14. Gilyén, A.; Arunachalam, S.; Wiebe, N.; Optimizing quantum optimization algorithms via
faster quantum gradient computation. arXiv:1711.00465v3 (2018).

15. Harrow, A.W.; Hassidim, A.; Lloyd, S.: Quantum algorithm for solving linear systems of
equations. arXiv:0811.3171v3 (2009).

16. Jozsa, R.: An introduction to measurement based quantum computation. Quantum
Information Processing 199 (2006).

17. Jozsa, R.; Linden, N.: On the role of entanglement in quantum computational speed-up.
arXiv:quant-ph/0201143v2 (2002).

18. Kerenidis, I.; Prakash, A.: Quantum Recommendation Systems. arXiv:1603.08675v3
(2016).

19. Lipton, R.J.; Regan, K.W.: Quantum Algorithms via Linear Algebra. MIT Press, 2014.
20. Mosca, M.: Quantum Algorithms. arXiv:0808.0369v1 (2008).
21. Nielson, M.A.; Chuang, I.L.: Quantum Computation and Quantum Information (10th

Anniversary Edition). Cambridge University Press, 2010.
22. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018).
23. Proos, J.; Zalka, Ch.: Shor’s discrete logarithm quantum algorithm for elliptic curves.

arXiv:quant-ph/0301141v2 (2004).
24. Rieffel, E.; Polak, W.: Quantum Computing - A Gentle Introduction. MIT Press 2014.
25. Sanders, Y.R.; Low, G.H.; Scherer, A.; Berry, D.W.: Black-box quantum state preparation

without arithmetic. arXiv:1807.03206v1 (2018).
26. Thompson, J.; Gu, M.; Modi, K.; Vedral, V.: Quantum computing with black-box

subroutines. arXiv:1310.2927v5 (2013).
27. Zdun, U.: Systematic Pattern Selection Using Pattern Language Grammars and Design

Space Analysis. Software: Practice & Experience, 37(9) 2007.

