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The term serverless is often used to describe cloud applications that comprise components managed by third
parties. Like any other cloud application, serverless applications are often tightly-coupled with providers, their
features, models, and APIs. As a result, when their portability to another provider has to be assessed, appli-
cation owners must deal with identification of heterogeneous lock-in issues and provider-specific technical
details. Unfortunately, this process is tedious, error-prone, and requires significant technical expertise in the
domains of serverless and cloud computing. In this work, we introduce SEAPORT, a method for automatically
assessing the portability of serverless applications with respect to a chosen target provider or platform. The
method introduces (i) a canonical serverless application model, and (ii) the concepts for portability assess-
ment involving classification and components similarity calculation together with the static code analysis. The
method aims to be compatible with existing migration concepts to allow using it as a complementary part for
serverless use cases. We present an architecture of a decision support system supporting automated assessment
of the given application model with respect to the target provider. To validate the technical feasibility of the
method, we implement the system prototypically.

1 INTRODUCTION

The term serverless often refers to applications com-
prising third party-managed components, which re-
sults in reduced maintenance costs and faster time
to market (Baldini et al., 2017). Function-as-a-
Service (FaaS) is a cloud service model allowing to
host business logic as fine-grained, executable func-
tions managed by providers. Functions can be used
within applications, e.g., for data formats conversion,
or as standalone components, e.g., single HTTP end-
points. The invocation is mainly event-driven, making
functions a reactive mechanism for processing various
events, e.g., database insert events triggering genera-
tion of thumbnails (Cloud Native Computing Founda-
tion (CNCF), 2018). In addition to provider-managed
scaling with an unbounded number of instances, func-
tions are also scaled to zero when they are idle.
By scaling to zero, FaaS eliminates the expenditures
for idle components, which is not the case for, e.g.,
PaaS deployments. However, despite the benefits,
serverless architectures are even more prone to var-
ious kinds of lock-in issues due to the relinquished
control over the infrastructure and thus stronger de-
pendence on provider’s configurations and features,

e.g., not supported memory limit or a specific event
source integration. As a result, porting such applica-
tions requires solving cumbersome serverless-specific
issues (Yussupov et al., 2019a). Particularly manual
portability assessment is inefficient and error-prone,
e.g., search of alternatives for unsupported compo-
nents or analyze required code modifications.

In this work, we introduce the SErverless
Applications PORtability assessmenT (SEAPORT)
method helping to assess the portability of server-
less applications. SEAPORT enables automated as-
sessment of a provided application using a canonical
serverless application format, and involves checking
the component architecture’s portability to the chosen
provider and analyzing the included source code ar-
tifacts to provide a comprehensive overview of porta-
bility issues. We discuss the method’s steps, introduce
a canonical serverless application model based on the
idea of pipes and filters pattern (Hohpe and Woollf,
2004), and present a decision support system’s archi-
tecture enabling the method. Moreover, to make the
method compatible with existing migration concepts,
as an integration point we discuss the boilerplate mod-
els and code generation, and validate the presented
concepts via a prototypical implementation.



2 BACKGROUND AND PROBLEM
STATEMENT

In this section, we provide the relevant background,
describe the problem and formulate the research ques-
tion we intend to answer.

2.1 Serverless Computing and FaaS

In general, as serverless applications comprise com-
ponents managed by third parties, developers are no
longer required to deal with managing the underlying
infrastructure (Cloud Native Computing Foundation
(CNCF), 2018; Baldini et al., 2017). Tasks such as
resource provisioning and scaling become provider’s
burden, which allows focusing more on business logic
implementation and reducing the overall time to mar-
ket. The Function-as-a-Service cloud service model is
one of the essential parts in serverless application de-
velopment as it allows hosting application’s business
logic in a form of event-driven functions that are often
short-lived, stateless and are scaled automatically by
cloud providers. One of the main advantages of FaaS
is that functions can be scaled to zero after a certain
inactivity period, which eliminates the need to pay
for idle instances (Baldini et al., 2017; Cloud Native
Computing Foundation (CNCF), 2018; Castro et al.,
2019). However, FaaS also has some known limita-
tions, e.g., certain FaaS platforms impose quotas on
the function execution time, making it more difficult
to implement more complex use cases (Hellerstein
et al., 2018). Since functions are scaled to zero, typi-
cally, it is often recommended making them stateless
while storing the application state in, e.g., database
services, which is also an example of a restriction im-
posed by the FaaS cloud service model.

2.2 Lock-in and Portability

The problem of becoming dependent on properties
and requirements of a chosen product, i.e., lock-in,
is well-known (Greenstein, 1997) and can be encoun-
tered in various situations, e.g., choosing certain hard-
ware, or software development framework. Cloud
computing is also an example of a field with multiple
lock-in issues (Satzger et al., 2013; Beslic et al., 2013;
Opara-Martins et al., 2014), which occur on vari-
ous levels including provider-specific runtimes and
packaging formats. For instance, applications can
be locked into a provider-specific REST API or cus-
tom message format requirements, allowed memory
and storage limits, or custom deployment automation
technologies like AWS Cloud Formation'.

Uhttps://aws.amazon.com/cloudformation

There are various reasons, why changing a provider
becomes necessary, e.g., change of technology, costs
optimization, decrease in the quality of service,
bankruptcy of a provider, legal issues or simply ter-
mination of the contract (Petcu, 2011). While cus-
tomers choose providers willingly and lock-in per se
is not a daily problem, the process of migrating ex-
isting serverless applications can become a serious
lock-in resolution issue because (i) cloud applications
are often built without portability in mind (Opara-
Martins et al., 2014), (ii) lock-in issues are very het-
erogeneous, e.g., vendor, product, version, or archi-
tecture lock-ins (Hohpe, 2019), and (iii) major parts
of serverless applications are prone to lock-in due to
reduced control over the infrastructure. For example,
the business logic hosted as FaaS functions gets cou-
pled with the specifics of a chosen FaaS platform,
e.g., different event formats and triggers configura-
tion for AWS Lambda and Microsoft Azure Func-
tions. Additionally, similar issues occur in other com-
ponent types in serverless applications, e.g., provider-
managed databases which have varying APIs and un-
derlying models. As a result, application owners must
face classic portability and interoperability issues in
the cloud (Bozman and Chen, 2010; Petcu, 2011;
Stravoskoufos et al., 2014) combined together with
serverless-specific lock-in issues (Yussupov et al.,
2019a) which require a good understanding of, e.g.,
component mappings, provider-specific development
guidelines and requirements, and packaging formats.

2.3 Problem Statement

Unfortunately, assessing the portability for server-
less applications across providers manually is an in-
efficient and error-prone process since (i) the avail-
able component mappings are often not known in ad-
vance which requires investing time into analyzing
provider’s offerings, and (ii) the hosted function code
can contain incompatible fragments which might be
easily overlooked, e.g., usage of a non-portable li-
brary. The evaluation phase of a serverless migration
process for a given application can, therefore, ben-
efit from an automated portability assessment which
can help to minimize the organizational efforts and
estimate the needed actions before proceeding with
actual migration. However, such evaluation often re-
quires an in-depth knowledge of multiple topics in-
cluding (i) serverless- and FaaS-related technical de-
tails such as trigger specifications, event formats, and
configuration requirements, (ii) deployment model-
ing options with respect to the chosen provider, and
(iii) the knowledge of possible provider-specific code
fragments that require attention. Moreover, to facili-
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Figure 1: An overview of the SEAPORT method’s steps
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tate the method usage as a part of existing migration
concepts there should be a feasible method integra-
tion point allowing to reuse the obtained portability
knowledge as a part of the larger migration process,
e.g., recommended code modifications and highlight-
ing portability pitfalls. In this work, we formulate and
answer the following research question: “How to au-
tomatically assess the portability of a given serverless
application’s component architecture and the avail-
able source code with respect to the selected target
provider and allow reusing the obtained knowledge
as a part of the overall migration process?”

3 THE SEAPORT METHOD

In this section, we introduce the SEAPORT method
that allows automatically assessing the portability of a
given serverless application by (i) checking the com-
patibility of its component architecture with the se-
lected target provider, and (ii) analyzing the source
code of components that host business logic, i.e.,
FaaS-hosted functions. To answer the research ques-
tion formulated in Section 2.3, we start with the
description of SEAPORT method which comprises
three steps shown in Figure 1, together with the
method integration point relying on boilerplate code
generation to allow using it as a complementary part
for migration of serverless use cases.

3.1 Step 1: Retrieve Deployment Model

Obtain the application’s deployment model describ-
ing application components and their configuration,
together with the corresponding code artifacts.

In the first step, the deployment model of a given
serverless application is retrieved together with code
artifacts, e.g., FaaS components’ code. Essentially, a
serverless application can be deployed using (i) man-
ual deployment, e.g., deploying components sep-
arately without having any deployment model, or
(i1) model-based deployment, e.g., via provided CLI
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or GUI, or using provider-specific and third-party de-
ployment automation technologies like AWS Cloud
Formation, Terraform?, or Serverless Framework>.
The model-based deployment relies either on impera-
tive or declarative models (Endres et al., 2017), where
the former defines a set of required actions and the
latter describes the desired state for all related appli-
cation components (Wurster et al., 2019b). Typically,
deployment automation technologies like Terraform
or Serverless Framework rely on declarative deploy-
ment models, which provide all relevant information
for application’s portability assessment.

Firstly, the application’s provider-specific deploy-
ment model contains necessary structural details, e.g.,
which types of components are used, their intercon-
nections, event bindings, and other configuration de-
tails. In cases when applications are deployed using
a provider-specific interface, e.g., AWS GUI, the de-
ployment model has to be crawled, e.g., by querying
the deployment model-related data using AWS CLI.
Another possible option is to extract the application
topology of a running instance (Binz et al., 2013).

The reason why source code artifacts must be
available is that the source code might contain poten-
tial portability pitfalls, e.g., lock-in into unsupported
library versions or incompatible service calls. Here,
deployment models are helpful for components’ code
discovery as well, since the source code artifacts are
either contained in the deployment package or refer-
enced in the deployment model.

In the next steps, we assume that

(1) adeclarative deployment modeling is used and the
deployment model is available,

(2) source code is accessible either because it is con-
tained in deployment package or referenced in the
model, and

(3) a deployment automation tooling is used to exe-
cute the deployment.

Zhttps://www.terraform.io
3https://serverless.com
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Figure 2: A UML class diagram of the SEAPORT CASE model

3.2 Step 2: Transform into the
SEAPORT CASE Model

Transform the deployment model into a canonical
serverless application format for checking target
provider’s compatibility.

In the second step, we transform the obtained de-
ployment model into a provider-agnostic format. The
main reason for transforming provider-specific de-
ployment models into a canonical format is to sim-
plify evaluating the portability of application’s com-
ponents and enable the results reuse. For exam-
ple, if several target platforms are to be evaluated,
the canonical format eliminates unnecessary point-to-
point transformations. To abstract away provider de-
tails, as a part of the SEAPORT method we introduce
the CAnonical SErverless (CASE) model. Although
there exist modeling approaches for serverless appli-
cations, e.g., focusing on the detailed deployment and
configuration modeling (Wurster et al., 2018; Kiri-
tikos et al., 2019; Samea et al., 2019) or abstract de-
pendency graph representation (Winzinger and Wirtz,
2019), the SEAPORT CASE model intends to be a
compromise between too detailed and too high-level
views while at the same time keeping the topological
information together with configuration details. This
would allow using the model as a generic serverless
application representation that can be mapped to more
technology-specific use cases or abstracted away to
plain dependency graph representation. The CASE
model is based on the idea of pipes and filters pat-
tern that describes an architectural style in which a
large task is split into smaller processing components
called filters that are interconnected using channels,
i.e., pipes (Hohpe and Woolf, 2004). Similarly, a typ-
ical serverless application topology comprises a set of

processing components, e.g., FaaS-hosted functions,
storage or messaging services, connected by means
of various types of channels, e.g., representing event
transmission or direct invocations. Therefore, it is
possible to represent a serverless application as a set
of interconnected filters and pipes of various types
that have different feature sets.

A UML class diagram shown in Figure 2 de-
picts the introduced CASE model. Essentially, in
this model a serverless application comprises one or
more filters of different type, e.g., functions or service
components. Filters of type Function are described
with various function-related properties, e.g., source
code’s programming language. Similarly, filters of
type Service represent different kinds of services in a
serverless application topology, e.g., databases, mes-
sage queues or streaming platforms. In addition, a
service might also serve as an event source of var-
ious categories such as schedulers or object stores,
which is described using a service type EventSource.
Each filter has zero or more incoming and outgoing
pipes representing different communication mecha-
nisms, e.g., event-driven with the specification of
which events trigger the function using the relation-
based event specification approach (Wurster et al.,
2018) or direct invocations. The events are speci-
fied using CloudEvents, a provider-agnostic event for-
mat*. One additional connection type that is often not
shown in the model explicitly is when a function con-
nects to service from the source code. This type of
connections can be identified either by analyzing the
security credentials defined/used in the deployment
model, or via the static code analysis. In addition, ev-
ery filter has a type-specific configuration, e.g., func-
tion memory limits and invocation schedule.

“https://cloudevents.io



3.3 Step 3: Assess Portability of the
Application’s Model and Code

Assess the portability of a given deployment model to
the target provider and analyze the source code of its
artifacts for possible migration pitfalls.

To assess portability of a given application to the se-
lected target provider or platform, two parallel tasks
have to be performed: (i) the deployment model has
to be analyzed with respect to its components’ suit-
ability, and (ii) code artifacts have to be analyzed to
identify dependencies not covered by the SEAPORT
CASE model such as provider-specific SDKs usage
or direct HTTP calls to third-party services. CASE
model is used as an input for deployment model suit-
ability evaluation, whereas the provider-specific code
artifacts from the application’s deployment package
serve as an input for code analysis. During the model
suitability assessment, the components of the appli-
cation are classified, e.g., functions, database and
messaging services, mapped to the service alterna-
tives of the target platform, followed by the deploy-
ment model similarity score calculation. The source
code analysis task serves multiple purposes includ-
ing library dependencies identification, code patterns
search to find provider-specific fragments to facilitate
the boilerplate code generation.

Step 3a: Model Portability Evaluation

As a preliminary step, we describe how components
of the application are classified to allow identification
of target provider’s service alternatives.

Service Classification. Essentially, each service
can (i) be an event source producing events that trig-
ger one or more functions in the application topology,
(ii) an invoked service, which can communicate with
other components but does not trigger any functions,
or (iii) combine both roles. There are multiple possi-
ble categories of event sources relevant for serverless
applications, including various storage types, mes-
saging and streaming platforms, or endpoints. Ta-
ble 1 demonstrates exemplary service alternatives for
a set of commonly-used event source categories of-
fered by several commercial platforms as well as an
example of alternatives for OpenFaaS, an open source
Kubernetes-based FaaS platform. We describe these
categories and list their basic properties relevant for
calculation of the coverage score in the following.

A. Endpoints. One of the most common ways to in-
voke FaaS-hosted functions is via HTTP calls. Often,
functions are exposed as endpoints by means of an

API Gateway, which is responsible for calling func-
tions that are bound to a particular event type, e.g.,
HTTP GET event. Note that there is subtle difference
between an event-driven HTTP-based invocation and
a direct HTTP call. The former is typically achieved
via subscribing functions to specific HTTP events that
are processed by an API Gateway. In contrast, the
latter is achieved by invoking endpoints from within
the source code, e.g., AWS Lambda Invoke API. The
endpoint event source type covers only event-driven
HTTP calls. The main properties that characterize
this event source are:

- Method: request method for the given endpoint
- Path: request path for triggering given functions
- Auth: authentication-related configurations.

The service alternatives for this category shown in Ta-
ble 1 can be described using a combination of these
generic properties serving as an assessment baseline
for endpoint event sources.

B. Object stores. The next common event source cat-
egory is the object storage, a cloud data store type fo-
cusing on file-level data abstractions (Mansouri et al.,
2018), e.g., AWS S3 or Azure Blob Storage. As a
baseline, we consider the following properties, shared
by services in this category:

- DataContainer ID: storage instance identifier,
e.g., S3 bucket or Azure blob

- Event types: list of events triggering functions,
e.g., PUT or DELETE events

- API: interfaces supported by the service.

Exemplary alternatives for the object storage category
are listed in Table 1.

C. Non-relational stores. Non-relational data store
type, which groups together NoSQL databases such
as AWS DynamoDB or Apache Cassandra, is one
more service category common for serverless applica-
tions. As a baseline set of properties for the category
of non-relational stores, we define:

- Database ID: unique identifier of the database in-
stance/partition

- Type: supported database models, since one ser-
vice might support more than one like CosmosDB
provides functionalities of, e.g., document, key-
value, or wide column stores

- API: interfaces supported by the service
- Query languages: supported query languages.

Table 1 shows example alternatives for the non-
relational store category.



IBM Cloud

Category AWS Lambda . Azure Functions OpenFaaS
Functions
Endpoint AWS API Gateway IBM API Gateway ~ API Management OpenFaas
p y y g API Gateway
Schedule AWS CloudWatch IBM Alarms Azur'e Timer Cron
Events Trigger
Object Storage AWS S3 Object Storage Azure Blob Min.io
Storage
Cassandra,
NoSQL AWS DynamoDB Cloudant CosmosDB MongoDB
PubSub Messaging AWS SNS Event Streams Event Grid NATS
Event Streaming AWS Kinesis Event Streams Event Hubs Kafka
Point-to-Point AWS SQS Event Streams Queue Storage RabbitMQ

Messaging

Table 1: Exemplary service alternatives for common event source categories offered by several well-known FaaS platforms

D. Schedulers. Another type of event sources are
time-based job schedulers such as cron’. Sched-
uled invocation of functions is a common use case
for serverless applications (Cloud Native Computing
Foundation (CNCF), 2018) offered as an option by
most FaaS platforms. Typically, provider use vari-
ous mechanisms supporting scheduled function invo-
cations, e.g., AWS CloudWatch events or Azure Time
Trigger which internally might also rely on cron, but
the format of cron expressions might differ, e.g., the
specification of time intervals. For schedulers, we de-
fine the following baseline set of properties:

- Cron: describes, whether cron jobs are supported

- Cron type: which cron format is supported, e.g.,
cron for .NET or crontab(5)

- Interval: support for recurring jobs execution
based on specified time intervals

- Once: once-in-a-lifetime jobs support.

Alternative ways to specify scheduled jobs for differ-
ent FaaS platforms are listed in Table 1.

E. Streaming and messaging. One more essential
category of event sources for serverless applications
comprises various streaming and messaging solu-
tions. Various providers implements these products
differently, e.g., Amazon provides AWS SQS for
implementing point-to-point messaging, AWS SNS
for implementing publish-subscribe messaging, and
AWS Kinesis for streaming, whereas IBM allows im-
plementing all of them using its Event Streams ser-
vice. To describe this category of services, we define
the following baseline properties:

Shttp://man.openbsd.org/cron.8

- Queue/Topic: name or location of the given
queue/topic

- Batch size: defines the number of events delivered
as a bundle

- Filter: describes the event filtering policy.

Table 1 lists possible alternatives for different mes-
saging and streaming options.

F. Invoked Services. Due to heterogeneity of invoked
services, it is often impossible to find a suitable alter-
native, e.g., AWS Alexa, IBM Watson, or third-party
services like GitHub. As a result, the same service
must be also used in a ported application, preferably
as-is. However, these components have to be ana-
lyzed in detail as in some cases using them as-is will
not work, e.g., different authorization and authentica-
tion configuration requirements.

Deployment Model’s Similarity Measure. Eval-
uating how portable the given application’s model
to the target provider, similarity of each component
needs to be checked against available alternative of-
ferings. This implies the descriptions of possible
provider offerings are present and can be used for
comparison. We envision the usage of knowledge
bases that provide such information for similarity
measure calculation, as in existing cloud migration
works (Andrikopoulos et al., 2013b; Andrikopoulos
et al., 2014). We elaborate more on this topic in the
system architecture description in Section 4.

To verify that a given application A with K distinct
service categories is portable to the selected target
provider X, we define the similarity measure as a
weighted sum of portability scores for every involved



service category:

Cx = ZSK'WK (D

keK
Where:
Sk: is the portability score for the service of type k
wy: is the relevance factor for the service of type

While the assessment of a given component’s porta-
bility also requires the static code analysis, from the
structural similarity’s perspective, at least two condi-
tions must hold for the target provider: (i) one or more
alternative categories for the given service must be of-
fered by the target provider, and (ii) alternatives must
support the same level of configurations, e.g., allow-
ing specification of identical even triggers or other pa-
rameters. Therefore, we define the portability score
S of a service of type k with Py distinct configured
properties with respect to the given alternative cate-
gory o with T, distinct properties as follows:

Se=) Xp-wp )
peP

Where:

1, iff 3teTy st. p=t
Xp:
P 0, otherwise

wp: is the relevance factor for the property p.

While it is possible to include the fact that several
alternatives are present in the final similarity mea-
sure, we consider only the alternative with the highest
portability score. In addition, the relevance factors for
both, properties and service categories are introduced
to make the decision making process more flexible.
In the default state, we assume that all categories and
properties have the same relevance factor.

Step 3b: Code Artifacts Analysis

As a next step after assessing model’s portability,
the available function’s source code has to be ana-
lyzed. There are several important aspects needed to
be checked including used libraries, embedded third-
party component calls, and provider-specific code
fragments, e.g., implementation of specific interfaces.
The identified snippets are automatically annotated
during static code analysis to be used for boilerplate
code generation and model refinement steps. One im-
portant outcome of code artifacts analysis that can af-
fect overall portability score is identification of a code
fragment that completely prevents migration of the
corresponding component, e.g., usage of incompati-
ble libraries or calls to unsupported remote services.
Same as with model’s similarity, the analysis of
provider-specific code fragments must rely on the

knowledge base which comprises positive and neg-
ative facts about target providers. Moreover, to aug-
ment this step, an interactive code exploration can fol-
low the automated code analysis to allow users to an-
notate more advanced fragments and add them to the
knowledge base for reuse.

Deciding on Application’s Portability

The data resulting from model’s similarity calcula-
tion and code analysis are combined and presented
before generating the target application model. In
many cases, making a strong conclusion based on
these metrics is not possible, e.g., even if a service
category has its portability score equal to zero, there
might exist ways to move the component to a new tar-
get environment. For example, the component can be
hosted using another cloud service model or reengi-
neered. Therefore, the outcome of the evaluation step
is presented to the user in a form of the portability
report, i.e., components with portability score equals
to zero, code snippets that are annotated as problem-
atic or non-portable, and possible recommendations,
which can be used as a complimentary input of the
employed migration methodology.

3.4 Method Integration Point: Generate
and Refine the Boilerplate Code

After verifying that the given application is portable
and code artifacts have no incompatible fragments, a
target application model can be generated. Hence, the
evaluated CASE model is used to generate a deploy-
ment model structure for a target deployment automa-
tion technology, e.g., AWS Cloud Formation. One
possible way to support multiple target transforma-
tions out-of-the-box is to use the Essential Deploy-
ment Meta Model (EDMM) (Wurster et al., 2019b;
Waurster et al., 2019a) as an output of this step, i.e.,
transform the evaluated CASE model into a corre-
sponding instance of EDMM and use the available
tooling to generate the target deployment model. The
annotated code artifacts obtained after the source
code analysis step are used to generate the boilerplate
code for respective function components in the tar-
get platform, e.g., generating prepared fragments that
wrap the business logic in a provider-specific manner
including implementation of specific interfaces and
handling of events pre-processing to avoid locking
into a provider-specific event format (Yussupov et al.,
2019a). The resulting deployment package can then
be refined to include, e.g., security-related configura-
tions, and used for further processing as a part of the
employed cloud migration methodology.



4 ARCHITECTURE AND
PROTOTYPICAL VALIDATION

In this section, we elaborate on the system architec-
ture enabling SEAPORT method and describe its pro-
totypical implementation. Additionally, we show pro-
totype’s output examples for a simple thumbnail gen-
eration application with respect to the method’s steps.

4.1 System Architecture

Figure 3 shows the conceptual system architecture
comprising three layers of components that enable the
SEAPORT method. The interfaces layer is responsi-
ble for interaction with the system, e.g., by means of
a command-line or graphical user interface. The busi-
ness logic layer comprises three core components re-
sponsible for (i) Model Retrieval, (ii) Model Assess-
ment, and (iii) Model Generation.

While model retrieval is not always needed, as
discussed in Section 3.1 there might be cases when
a model can be retrieved using the provider’s inter-
faces. To support this, the architecture comprises a
set of crawlers, e.g., allowing to crawl deployed AWS
applications, managed by the retrieval controller.

The application portability assessment includes
the assessment controller that manages (i) model as-
sessment engine that calculates similarity measures
for given deployment models with respect to the tar-
get provider and provides component mappings, and
(ii) code analysis engine that consists of language-
specific plugins for identifying important code frag-
ments and annotating them. In addition, to simplify
the mapping process, the system provides a mapping
engine which supports defining technology-specific
mapping rules in a form of templates, e.g., mapping
rules for Terraform or AWS SAM.

The model generation components contains a re-
spective controller that is responsible for managing
model and code generation engines. These engines
comprise technology-specific plugins for model and
code generation, e.g., for generating an EDMM or
Serverless model based on the given evaluated canon-
ical model, or generating a Java boilerplate code frag-
ments for wrapping the existing business logic and
hosting it on a new provider.

Finally, the Resources layer includes the Artifacts
Repository which is responsible for storing interme-
diate and final results, and the Portability Knowl-
edge Base. The latter stores several different types
of facts. Firstly, the knowledge base stores provider-
specific descriptions of service offerings that are used
for identification of suitable alternatives and the over-
all model evaluation process. Moreover, it stores such

REST API, Web Ul, ...

Interfaces Layer

Model Retrieval Model Generation

Model Retrieval Model & Code Generation
Crawlers J Controller Generation Engines Controller
Model Assessment Manager

Mapping Engine | Model Assessment Engine § Code Analysis Engine
Assessment Controller

Business Logic Layer

Portability Knowledge Base Artifacts Repository

Resources Layer

Figure 3: A conceptual system architecture of the portabil-
ity evaluation and preparation system

information as provider-specific mapping rules, e.g.,
for used libraries, function signatures, or code frag-
ments. Additionally, the offered interfaces must pro-
vide users with the possibility to register new and
modify existing facts in the knowledge base to im-
prove the coverage of possible portability cases.

4.2 Prototypical Implementation and
Example Code Excerpts

To validate the introduced SEAPORT method and
system architecture, we implemented Skywalker®, an
open source web application which consists of the
frontend and backend components, and is available
on GitHub. In Skywalker, the backend component im-
plemented using Java Spring communicates by means
of a REST API with the frontend developed in Angu-
lar. For the runtime processing tasks we use a com-
bination of the file system and H2, an in-memory
database. Additionally, as a persistence layer we use
MongoDB which is repsonsible for two repositories,
namely for (i) Service Mappings, and (ii) Service
Property Mappings. For the static code analysis we
use JavaParser, a library for parsing and analysis of
Java code. The source-to-target model assessment
and boilerplate code generation is implemented for
models defined using Serverless Framework for AWS
Lambda and Azure Functions.

In the following, we show excerpts of model and
code snippets related to porting a simple thumbnail
generation application (Yussupov et al., 2019a) from
AWS Lambda to Azure Functions. Listing 1 shows
the input model defined using Serverless Framework,
which specifies a function for uploading images into
an images bucket, and a function for generating
thumbnails and storing them in the output bucket.

Shttps://github.com/iaas-splab/skywalker-prototype



Listing 1: Input deployment model of a thumbnail genera-
tion application for AWS Lambda defined using Serverless
Framework

service: thumbnail—generator
custom: {in: images—bucket, out: thmbnails—bucket}
provider:
name: aws
runtime: javag
region: us—east—1
iamRoleStatements :
— Effect: Allow
Action:
— 83k
Resource: 7x”
environment:
INBKT: ${self:custom.in}
OUTBKT: ${self:custom.out}
package: {artifact: target/thmb—gen.jar}

functions:
upload:
handler: tst.UploadHandler
events:
— http:
path: upload
method: post
thumbnail—generator:
handler: tst.GenerationHandler
events:
— s3:
bucket: ${self:custom.in}
event: s3:0bjectCreated :x
resources:
Resources:
ThumbnailBucket :
Type: AWS::S3:: Bucket
Properties :
BucketName: ${self:custom.out}

When the input model is analyzed and transformed
into the CASE model instance, the provider-specific
information is abstracted away and the involved com-
ponents are classified using generic category names
as described in Section 3. An excerpt of the resulting
generic model which describes component types and
their required properties is shown in Listing 2.

Listing 2: CASE model obtained from the input deployment
model of a thumbnail generation application
{ ”_id”: “thumbnail—generator”,

“eventSources”: {
“http”: [”path”, "methods”],

“storage”: [“resourceld”, "events”]
“functions ”: {
“thumbnail—generator”: [”handler”, “events”],
“upload”: [”handler”, "events”]
.
“invokedServices”: {
”Action”: [],
}

// system properties

}

To generate the target boilerplate model, the CASE
model is analyzed and mapped to the required
provider-specific structure. Listing 3 shows a boiler-
plate model for porting the thumbnail generation ap-
plication to Azure Functions using Serverless Frame-
work in which the components and properties are
mapped to the suitable alternatives. All models are
stored separately in MongoDB and can eventually be
reused, e.g., for generating the boilerplate model code
for another target provider or platform.

Listing 3: A template of the output deployment model for
Azure Functions defined using Serverless Framework

service: thumbnail—generator
custom: {in: images—bucket, out: thmbnails—bucket}
provider:
environment:
INBKT: ${self:custom.in}
OUTBKT: ${self:custom.out}
stage: dev
name: azure
runtime: javag
location: West US
package: {artifact: target/thmb—gen.jar}
functions :
thumbnail—generator:
handler: tst.GenerationHandler
events:

— blob: {path: "’}
upload:

handler: tst.UploadHandler
events:

— http: {route: '°, methods: *°}

Listing 4: Example snippets of the annotated source code

import ...lambda.runtime.Context; // <=={Context}
import ...s3.model.S30bject; /1 <=={S30bject}

public class ThumbnailGenerationHandler implements
RequestHandler<S3Event, Void> { // <=={RequestHandler}
/1 <=={S3Event}

private ObjectMapper mapper = new ObjectMapper ();
private AmazonS3Client c¢= ...; // <=={AmazonS3Client}...

Additionally, the prototype annotates functions’
source code to highlight usage of provider-specific
libraries. Examples of annotated Java function for
AWS Lambda are shown in Listing 4.

S RELATED WORK

To the best of our knowledge, there exist no works
on serverless portability assessment, also with no re-
lated mentions in a relevant, recently-published sys-
tematic mapping study (Yussupov et al., 2019b). Sev-
eral works focus on deployment and configuration
modeling, e.g., using cloud modeling languages like
TOSCA (Wurster et al.,, 2018) or CAMEL (Kii-
tikos et al., 2019), or UML Profile (Samea et al.,
2019) which also defines events including provider-
specific types, e.g., AWS Kinesis. An abstract, graph-
based model representing a serverless dependency
graph (Winzinger and Wirtz, 2019) is used for test-
ing and verification purposes. The SEAPORT CASE
aims to describe serverless applications in a language-
and technology-agnostic way, and independently of
context to enable translation into, e.g., more concrete
deployment models or abstract representation models.

A systematic study by Silva et al. (Silva et al.,
2013) investigates how cloud lock-in is solved in re-
search literature. Opara-Martins et al. (Opara-Martins
et al., 2014) discuss several kinds lock-in and such
problems as integration and data portability. Lip-
ton (Lipton, 2012) discusses how vendor lock-in can



be avoided by using TOSCA, the cloud modeling lan-
guage standardized by OASIS. Hohpe (Hohpe, 2019)
presents different lock-in types, with vendor lock-
in problem being one of them. Miranda et al. (Mi-
randa et al., 2012) present software adaptation meth-
ods for overcoming the vendor lock-in problem. Au-
thors describe the relations between service mismatch
types and suitable adaptation approaches on the high
level. As a possible application, this work can be
used as a basis for extending the assessment mech-
anisms. Andrikopoulos et al. (Andrikopoulos et al.,
2013a; Andrikopoulos et al., 2013b; Andrikopoulos
et al., 2014) provide an analysis of migration chal-
lenges of the decision-making process for migrating
applications to the cloud. Various classes of require-
ments, e.g., multi-tenancy, elasticity, quality of ser-
vice, are analyzed and combined into a decision sup-
port framework for cloud migration. Frey and Hassel-
bring (Frey and Hasselbring, 2011) introduce a multi-
phase approach for migrating legacy software systems
to IaaS and Paa$, including such phases as extraction,
selection, evaluation, transformation and adaptation.
Binz et al. (Binz et al., 2011) present the cloud migra-
tion framework that analyzes possible hosting options
for the provided model of an application. Strauch
et al. (Strauch et al., 2015) elaborate on a vendor-
agnostic multi-phase process enabling the migration
of a database layer to the cloud. Beslic et al. (Beslic
et al., 2013) propose a multi-phase approach for mi-
grating components across providers comprising dis-
covery, transformation, and migration steps. In this
work, we rely on existing knowledge to introduce a
method covering the specifics of serverless portability
assessment and which can be used as a complemen-
tary part in larger migration approaches.

6 CONCLUSION

In this work, we presented SEAPORT, a multi-
step method for assessing the portability of serverless
applications. The core contributions of this work are
(1) a canonical serverless application model, (ii) porta-
bility assessment concept relying on the deployment
model similarity measure and static code analysis,
and (iii) a system architecture enabling the method.
We validated SEAPORT by implementing an open
source prototype available via GitHub. As the next
step, we plan to add support for more providers,
and evaluate our method using several heterogeneous
serverless use case applications. In future work, we
will extend the SEAPORT CASE model to support
additional usage scenarios, e.g., reasoning on plat-
form selection with respect to specific platform fea-

tures such as function orchestration support. Another
important enhancement is to introduce additional ap-
plication similarity measures, and standardize the for-
mat of knowledge bases with serverless portability
facts by adapting existing migration methodologies.
The latter can also help defining a set of thorough
guidelines for improving portability of serverless ap-
plications. Additionally, we plan to support user-
driven boilerplate code generation which requires en-
hancing the system with additional user interfaces.
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