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Abstract—Quantum computing promises considerable advan-
tages in efficiency and accuracy over classical computing for cer-
tain problems. However, today’s Noisy Intermediate-Scale Quan-
tum (NISQ) computers are error-prone and limited in the number
of qubits, which complicates leveraging them in practice. To
mitigate these issues, multiple warm-starting techniques are being
introduced in the quantum computing domain to improve the ef-
ficiency and accuracy of quantum algorithms by utilizing known
or efficiently generated results as a starting point for the quantum
computation. However, heterogeneous warm-starting techniques
are often tailored for specific algorithms and require expertise
in multiple domains, such as quantum computing and ma-
chine learning, thus complicating the choice of technique. Well-
structured patterns that abstractly document proven solutions to
recurring problems can help quantum software engineers in this
decision-making process. In this work, we extend the existing
pattern language for quantum algorithms with four novel warm-
starting patterns that refine a more abstract pattern introduced
in previous work and document how recurring problems in the
design and execution of quantum algorithms can be solved with
warm-starts. Thereby, the underlying methods are made available
for interested parties in a concise and easily digestible manner.

Keywords—Quantum Computing; Hybrid Algorithms; Quantum
Software Engineering; Warm-Start; Patterns.

I. INTRODUCTION

On quantum computers, information is represented by the
states of quantum bits (qubits), which possess unique prop-
erties, such as superposition and entanglement. Due to these
properties, quantum computing promises advantages over
classical computing for certain problems [1]. For example, fac-
torization of composite numbers is theoretically feasible with
the help of quantum computers, but not known to be tractable
with classical computers [2]. Moreover, it has been shown that
a significant speed-up over classical machine learning is pos-
sible in certain cases when utilizing quantum computers [3].

In the current Noisy Intermediate-Scale Quantum (NISQ)
era, quantum computers offer a limited number of qubits that
are prone to errors [4][5]. Therefore, quantum algorithms are
limited to quantum circuits acting on few qubits and requiring
only few operations. Moreover, many algorithms are designed
as hybrid quantum-classical algorithms with the intention to
utilize both classical and quantum computation in a fruit-
ful combination that mitigates these current limitations. The
most prominent examples are Variational Quantum Algorithms
(VQAs) consisting of parameterized quantum circuits and a
classical optimizer employed to search for viable parameter
values for these circuits to solve a problem at hand [6]. Quan-
tum algorithms can be further improved using so-called warm-

starting techniques that utilize known or efficiently generated
results as a starting point instead of starting from scratch.
However, warm-starting is an umbrella term for a heteroge-
neous set of techniques that affect quantum algorithms in fun-
damentally different ways and exhibit a multitude of properties
and potential benefits [7]. For example, warm-starts can be
realized by encoding information into a quantum algorithm’s
initial quantum state or a sophisticated parameter initialization.
Techniques proposed in the literature are often specialized for
specific algorithms and problems, which complicates reusing
them or even deciding about their suitability for a certain
use case. Moreover, they often require expertise in different
domains, including quantum computing and machine learning.
Patterns document abstract solutions to recurring prob-
lems [8] and can help engineers understand and apply these so-
lutions for their specific use case. To support quantum software
engineers in better understanding the concepts, applicability,
and benefits of different warm-starting techniques, we present
four novel warm-starting patterns. With these patterns, we cap-
ture recurring solution strategies for warm-starting quantum
algorithms and refine the more abstract warm-starting pattern
that exists in the pattern language for quantum algorithms.
The remainder of the paper is structured as follows:
We discuss related work in Section II, before fundamentals
and the pattern format are introduced in Section III. Sec-
tion IV introduces the four new warm-starting patterns in
detail. In Section V, we discuss aspects of the application of
the patterns and the evaluation of the warm-starts. Finally,
Section VI concludes the paper with a summary and outlook.

II. RELATED WORK

Leymann [9] proposed and initiated a pattern language for
quantum algorithms. This pattern language has been continu-
ously extended, e.g., with refined patterns for state preparation,
hybrid quantum algorithms, error handling, and execution
semantics [10]-[16]. In this work, we further extend it by doc-
umenting four novel patterns capturing different solutions for
warm-starting quantum algorithms, which refine the existing,
abstract WARM-START pattern. These new patterns were iden-
tified through an analysis of quantum-related warm-starting
techniques encountered in the literature (cf. Section III).
To the best of our knowledge, there exist no other works
documenting patterns in the quantum computing domain and
conforming to Alexander et al.’s notion of patterns [8].

Pattern languages, originally known from architecture [8],
have been documented for various other domains, e.g., for soft-
ware engineering [17], enterprise integration [18], and cloud



computing [19]. Leymann and Barzen [20] propose Pattern
Atlas, a repository and tool to visualize and link patterns of
different pattern languages. Moreover, Falkenthal and Ley-
mann [21] propose the concept of solution languages that in-
terconnect concrete solutions for patterns, i.e., implementation
artifacts, to systematically collect implementation knowledge
and reduce the manual efforts of (re)implementing existing so-
lutions. Such solutions are linked to the corresponding patterns
and other solutions as per the relations in the pattern language.

Warm-starting techniques were proposed and examined in
various previous works. Mari et al. [22] discuss and evaluate
forms of quantum transfer learning, particularly different
directions in which quantum transfer learning can be utilized
in the context of Quantum Neural Networks (QONNs). Egger
et al. [23] and Tate et al. [24], respectively, describe and
evaluate how classical approximation algorithms can be
utilized in the Quantum Approximate Optimization Algorithm
(QAOA), while Galda et al. [25] and Shaydulin et al. [26] focus
on transferring parameters across problem instances. Truger
et al. [7] explore and analyze warm-starting techniques in
the quantum computing domain in a literature study, thereby
summarizing categories of such techniques. Beisel et al.
[27] propose a workflow modeling extension to facilitate the
integration and orchestrations of VQAs in workflows. This
includes modeling constructs for warm-starting VQAs with
initial parameter values and approximations incorporated
into a biased initial state. However, none of these works
formally document the warm-starting techniques as solutions
to recurring problems in the form of patterns.

III. FUNDAMENTALS AND PATTERN FORMAT

In this section, we discuss fundamentals of quantum al-
gorithms and VQAs in particular. Moreover, we present the
pattern format and authoring method used in this work.

A. Fundamentals of Quantum Algorithms

Quantum algorithms are implemented as quantum circuits
describing manipulations of qubits similar to classical logic
circuits. Quantum circuits consist of wires representing the un-
derlying qubits and gates representing operations on the qubits.
The number of wires is called the width of the circuit and the
number of gates acting on a qubit determines the circuit depth.
Gates can act on a single qubit or multiple qubits, e.g., the
Hadamard gate (H) creates a superposition on a single qubit
and the two-qubit controlled-not gate (CNOT) can be used to
entangle or disentangle qubits. Some gates, such as the rotation
gates RX, RY, and RZ, are parametrized, i.e., the intensity of
the manipulation depends on parameter values set at runtime.
Therefore, circuits can be parameterized as well and their
output upon measurement depends on the parameter values.
Such parameterized quantum circuits are the basis for VQAs,
such as the QAOA [28], Variational Quantum Eigensolvers
(VQEs) [29], and QNNs [30]. To determine viable values
for the circuit parameters of VQAs, classical optimizers are
employed. Quantum and classical execution are then executed
in a loop, in which the output of the circuit run on a quantum

device is evaluated for the optimizer to steer parameter values
in a favorable direction. Once a termination condition is met,
e.g., when the result has converged or a set time limit has
expired, the circuit can be executed with the final set of
optimized parameter values to retrieve the result of the overall
quantum-classical algorithm. This way, the aforementioned
QAOA can be used to approximate solutions to combinatorial
optimization problems or VQEs can be used to approximate
eigenvalues with the help of a quantum computer. More
generally, QNNs can be trained to compute arbitrary functions
for various purposes, e.g., classification or regression [30].

B. Pattern Format and Authoring Method

We follow the pattern format from previous work on
quantum computing patterns [9]-[16] and rely on best
practices for pattern writing [17]-[19]. Each pattern is
identified by its Name and an Icon that serves as a mnemonic.
The Problem targeted by the pattern is highlighted with a
brief question. Known alternative names are optionally listed
as Aliases. Afterward, the Context in which the pattern is
applicable, i.e., the situation in which the problem may arise,
is explained. Next, Forces that need to be considered when
solving the problem are described. Then, we elaborate on the
high-level Solution that is additionally illustrated by a Solution
Sketch. In the Results paragraph, we discuss the consequences
of the solution. Afterward, we draw connections between
the new pattern and Related Patterns, before we summarize
Known Uses by listing implementations of the pattern.

As patterns are abstractions of existing solutions, the pat-
terns in this work were identified by exploring warm-starting
techniques proposed and used in the literature. In previous
work, we conducted a systematic mapping study to survey sci-
entific literature on warm-starting techniques in the quantum
computing domain in general, thereby identifying different
warm-starting techniques [7]. Recurring approaches that are
regarded promising were further analyzed, and the underlying
solutions were abstracted and documented as patterns.

IV. WARM-STARTING PATTERNS FOR QUANTUM
ALGORITHMS

In this section, we first give an overview of the patterns
introduced in this work and align them w.r.t. the existing
patterns for quantum algorithms. Afterward, we document the
four novel warm-starting patterns for quantum algorithms.

A. Pattern Language for Quantum Algorithms

Figure 1 provides an overview of the pattern language for
quantum algorithms proposed and initialized by Leymann
[9] with its essential patterns for quantum states, unitary
transformations, and the program flow of quantum algorithms.
It aims to support scientists and software developers in
building quantum algorithms. Weigold et al. [10] [11]
extended the pattern language with state preparation patterns
for quantum algorithms focusing on how data can be encoded
in quantum algorithms. Also, additional patterns for the
program flow of hybrid algorithms were documented [12].
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Figure 1. Overview of the pattern language for quantum algorithms, including the newly documented warm-starting patterns highlighted in bold.

Particularly, Weigold et al. [12] identified warm-starting as
a general pattern applicable to quantum algorithms, which
we aim to refine in this work with more concrete recurring
solutions in that sense. Beisel et al. [13] describe patterns
for quantum error handling and Georg et al. [14] document
patterns for the execution of quantum applications. Moreover,
patterns for the partitioning of quantum circuits, i.e., circuit
cutting, have been introduced by Bechtold et al. [15].

B. Warm-Starting Techniques for Quantum Algorithms

The WARM-START pattern identified by Weigold et al.
refines the more general QUANTUM-CLASSIC SPLIT pattern,
which summarizes splitting of computational workload be-
tween quantum and classical computers [9][12]. In this sense,
it suggests to use classical methods to approximate a solution
to the problem at hand and utilize the approximation as
a starting point. As shown in Figure 1, the new patterns
presented in this work further refine the WARM-START pattern.

In our previous work [7], we identified different properties
of warm-starting techniques, e.g., warm-starts can be
applied in different directions, i.e., classical-to-quantum
(C2Q), quantum-to-quantum (Q2Q), and quantum-to-classical
(Q2C) [22]. Since this work focuses on warm-starting patterns
for quantum algorithms in line with the pattern language,
only C2Q and Q2Q cases are considered in the following.

Approximation
Algorithm

Circuit with Biased

C. Biased Initial State

Problem: How to utilize efficient approxima-
tions in quantum algorithms to improve the
solution quality or speed up the computation?

Context: For many computationally hard problems, efficient
approximation algorithms exist. However, typical quantum
algorithms neglect these approximations and valuable
information remains unused as the quantum algorithm starts
from a neutral position. As a result, deep quantum circuits
may be required, which increases accumulative error rates, and
more quantum resources may be required to solve a problem.
Forces: Moreover, current quantum devices are error-prone,
thus, the depth of executable quantum circuits is limited. How-
ever, including approximations requires special care, as it can
limit the quantum algorithm in an unintended way [31][32].
Also, changing the initial state may require additional adapta-
tions of corresponding parts of the quantum circuit [23][33].
Solution: Encode approximations into the initial state of quan-
tum circuits, thereby biasing the initial quantum state towards
viable solutions. Hence, a chain of algorithm executions as de-
picted in Figure 2 is beneficial: First, an efficient algorithm is
utilized to approximate a solution of a given problem instance.
This can often be achieved at low cost on classical hardware.
Then, the initial state |¢) of the subsequent quantum algorithm
is biased toward the approximation and the algorithm is

Improved

Initialization Solution

Problem
Instance(s)

Approx.
Solution
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Pre-Process Problem to
Obtain Approximation
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Prepare & Execute Circuit with
Biased Initial State

Obtain Improved
Solution

Figure 2. Solution sketch for the BIASED INITIAL STATE pattern



executed on a quantum device to obtain an improved solution.
Result: The quantum algorithm employed in the second step
utilizes the approximation as a starting point to improve
upon. Due to the biased initial state, optimal solutions can
be explored quicker and the solution quality achievable in a
set amount of time may therefore increase. Moreover, this way
the workload of the overall computation can be distributed to
multiple devices, e.g., classical and quantum devices.
Related Patterns: This pattern is a refinement of the WARM-
START pattern and related to the state preparation patterns,
e.g., ANGLE ENCODING, since different encodings may be
applied to prepare and bias the initial state of a quantum
algorithm [11][12]. Moreover, it can be applied with the VQA
pattern and its refinements, such as the QAOA [12].

Known Uses: Egger et al. [23] introduce a biased initial
state for QAOA and the Maximum Cut problem (MaxCut)
utilizing the classical Goemans-Williamson approximation
algorithm. Similarly, Tate et al. [24] adapt QAOA for MaxCut
with a Burer-Monteiro relaxation of the problem. QAOA was
also adapted for a biased initial state for the Knapsack prob-
lem [34]. Wang [35] proposes a “classically-boosted” quantum
algorithm for the Maximum 3-Satisfiability and Maximum
Bisection problems based on biased initial states. Beisel et al.
[27] propose a workflow modeling construct facilitating the
integration of warm-starts via biased initial states in VQAs.

D. Pre-Trained Feature Extractor

Problem: How to process large data items
through QNNs when the number of available
qubits is lower than the size of a data item?

)

&3

Aliases: QUANTUM TRANSFER LEARNING [22]

Context: A QNN shall be trained for a specific task, that
requires the processing of large data items, e.g., images
or multi-dimensional data. However, the number of qubits
required to load such data items into the QNN is larger than
the number of qubits of the available quantum devices.
Forces: The width of circuits implementing QNN is limited
by the number of available qubits. In addition, quantum
devices are scarce resources that should be utilized as
efficiently as possible. However, naively reducing the original
data items may result in the loss of information relevant
for the computation. Large pre-trained classical models for
various general tasks, such as object recognition for images,
are widely available or can be created at low cost.

Training Classical ~ Pre-Trained
Data Model Model
AR T
(gze o

Target
Training Data

Solution: Use a pre-trained classical model to reduce the di-
mensions of the data items and train the QNN based on the re-
duced data. As shown in Figure 3, a pre-trained classical model
for a wide range purpose, such as a neural network trained for
object recognition, can be utilized for a hybrid QNN to be
trained for a related special purpose task. Intermediate values
of inputs processed through such models, e.g., those present at
a condensed next-to-last neural network layer, can be seen as
a compressed representation of the original data exhibiting its
most significant features. Thus, the pre-trained model serves
as a feature extractor. These features can be encoded into a
quantum state to train the QNN for the target task.

Result: Due to the compressed representation obtained from
the pre-trained feature extractor, fewer qubits are required to
process data in the QNN. Furthermore, the compressed nature
of the data may reduce the QNN’s training time, as irrelevant
information has already been omitted from the training data.
Related Patterns: This pattern refines the WARM-START
pattern and is related to the state preparation patterns, e.g., AN-
GLE ENCODING, [11][12]. Different encodings may be applied
to encode the extracted features into a quantum state. It is typ-
ically applied in conjunction with QNNs, a form of VQA [6].
Furthermore, the CIRCUIT CUTTING pattern solves a similar
problem by partitioning the computation of a large quantum
circuit into computations of multiple smaller circuits [15].
Known Uses: PRE-TRAINED FEATURE EXTRACTOR is
frequently used when image processing, particularly image
classification, shall be enhanced with QNNs [22][36]-[41].
It was also applied for text classification [42]. Moreover,
autoencoders [43] can be considered a special case of
PRE-TRAINED FEATURE EXTRACTOR, that are designed and
trained specifically for the purpose of data compression.

E. Variational Parameter Transfer

By
8
Context: A VQA needs to be executed on a quantum de-
vice, which encompasses the optimization of its variational
parameters. Parameter optimization requires repeated access
to the quantum device, typically starting with random initial

parameter values [44], to sample solutions and determine a
direction for their optimization, e.g., through gradient descent.

Problem: How to obtain a problem-aware pa-
rameter initialization for VQAs that reduces the
optimization runtime?
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Figure 3. Solution sketch for the PRE-TRAINED FEATURE EXTRACTOR pattern
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Figure 4. Solution sketch for the VARIATIONAL PARAMETER TRANSFER pattern

Forces: Obtaining viable parameter initializations for VQA
is challenging due to large parameter spaces and effects,
such as barren plateaus [45] and non-convex optimization
landscapes [46]. Barren plateaus are areas with vanishing
gradients in a cost function’s parameter space that must be
avoided, whereas local minima in non-convex optimization
landscapes pose an additional challenge to efficient parameter
initialization as they disturb the search for a global optimum.

Solution: Transfer viable variational parameter values from
related problem instances. As shown in Figure 4, optimized
parameter values may be stored or directly reused for new
problem instances. In many cases, it can be expected that
optimized parameter values for a solved problem instance are
in proximity of viable parameter values for a related or similar
new problem instance. Therefore, optimized parameter values
from earlier executions may be utilized for a problem-aware
parameter initializationinstead of a random initialization. Ap-
propriate databases, toolkits, and provenance systems for quan-
tum computing [47][48] facilitate the optional storage of opti-
mized parameter values for their utilization in later executions.

Result: Parameter transfers can reduce the number of itera-
tions of the optimization loop. A favorable parameter initial-
ization can also increase the likelihood of finding globally op-
timal parameter values and thus increase the solution quality.

Related Patterns: This pattern is a refinement of the WARM-
START pattern and can be applied in conjunction with VQA,
including its refinements like QAOA, [12].

Known Uses: VARIATIONAL PARAMETER TRANSFER has
been frequently proposed and applied for QAOA and Max-
Cut [25][26][49][50]. Moreover, Shaydulin et al.’s repository of
preoptimized parameters implements the storage option [47].
Beisel et al. [27] propose a modeling construct for workflows
to integrate warm-starts via parameter initialization in VQAs.

VQA with

Problem
lnstance(s)

Global Optimizer Problem Instance(s)
& Prior Param Values

## ##

F. Chained Optimization

Problem: How to avoid local optima and im-
prove convergence when optimizing variational
parameter values for VQAs?

P el

oz

Context: Optimal variational parameter values for a VQA
need to be determined. The performance of the algorithm
depends heavily on these values and a global optimum in the
parameter space is needed to obtain optimal solutions.
Forces: Local minima in non-convex optimization landscapes
and barren plateaus hinder the optimization, as the optimizer
may be unable to reach a global optimum. Moreover, evalu-
ating all possible parameter values is infeasibly expensive.
Solution: Chain different optimizers with different scopes
or strengths together. As indicated in Figure 5, a global
optimization strategy can be combined with a subsequent local
optimizer. The former would determine a general area of inter-
est in the overall optimization landscape. Afterward, the local
optimizer is started from a point in this area of interest and
searches on a smaller scale, aiming to find the global optimum.
Result: By chaining optimizers, the subsequent optimizers
utilize previously obtained results as starting points to improve
upon. Thereby, optimizers are combined to benefit from their
respective strengths and achieve cost-efficient optimization.
Related Patterns: This pattern refines the WARM-START
pattern and can be applied in conjunction with VQA,
including QAOA, [12]. Tt is similar to the VARIATIONAL
PARAMETER TRANSFER pattern documented above, with
an unaltered problem instance, while the algorithm in use,
specifically the optimization algorithm, is exchanged instead.
Known Uses: Rad et al. [51] use this method to avoid
barren plateaus in VQAs. Tao et al. [52] apply it in a QNN
optimization. Wauters et al. [53] supplement their Reinforce-
ment Learning-based optimization approach for QAOA with
subsequent gradient-based local optimization.

VQA with
Local Optimizer

Use Global Optlmlzer to Identify
General Area of Interest

Continue with Local
Optimizer to Improve Solution

>

Figure 5. Solution sketch for the CHAINED OPTIMIZATION pattern



V. DISCUSSION

We discuss known and potential challenges and limitations,
and evaluation criteria for the application of the patterns above.
The dependency of concrete warm-starting solutions on dif-
ferent problem-specific factors, such as the nature of the quan-
tum algorithm and problem at hand, available approximation
algorithms, and feasible quantum state preparation procedures,
can complicate the pattern application. In particular, the BI-
ASED INITIAL STATE and PRE-TRAINED FEATURE EXTRAC-
TOR patterns require the determination of suitable techniques
for obtaining and incorporating starting points on a case-by-
case basis. Moreover, it was shown that the success of warm-
starts through a biased initial state can depend on the careful
selection of approach-specific hyperparameters [23][54]. In
addition, such warm-starts can unintentionally prevent im-
provements as was shown, for example, for a warm-started
variant of the QAOA where replacing the initial uniform
superposition with the encoding of a good solution fails with
little to no improvements [31]. Furthermore, applying biased
initial states can impose restrictions on the parameterized
quantum circuit in VQAs and some state preparations are not
feasible on current NISQ hardware [32]. More specifically,
some circuit designs complicate or prevent retaining the so-
lution quality associated with the encoded biased initial state.
These challenges and limitations likely also apply to the PRE-
TRAINED FEATURE EXTRACTOR pattern, which likewise re-
quires encoding information in the initial state. However, it
was shown for the BIASED INITIAL STATE that both problems
can be avoided in some cases by transforming the initial state
into a parameter transfer in VQAs [32]. Incorporating starting
points for the parameter-focused VARIATIONAL PARAMETER
TRANSFER and CHAINED OPTIMIZATION patterns is trivial
since it reduces to a parameter initialization. Nonetheless,
these warm-starts via parameter initializations could also po-
tentially restrict the subsequent optimization in an undesired
way when applied improperly, especially by limiting the
optimization to an unfavourable area of the parameter space.
Also the evaluation of warm-starting techniques is chal-
lenging, as it is problem-specific and likewise dependent on
different factors, such as available approximations and state
preparation procedures. As different warm-starting methods
aim to improve upon different behaviours, e.g., a reduced need
for quantum computational resources, reduced runtime, or
increased accuracy (cf. [7]), different approaches and metrics
are required for analyzing and comparing them. Moreover, in
the case of hybrid warm-starts, the trade-off between classical
and quantum computational efforts may be ambiguous and
dependent on the use case and concrete resources at hand.
The broad spectrum of potential applications of the warm-
starting patterns introduced in this work may become even
more extensive when considering warm-starts in other contexts
outside of the quantum computing domain. It is conceivable
that some techniques are analogously applicable in similar
contexts of classical computing and, particularly, the classical
domains of machine learning and optimization (cf. [7]).

VI. CONCLUSION

In this work, we elaborated on warm-starting techniques for
quantum algorithms. We documented four novel patterns, BI-
ASED INITIAL STATE, PRE-TRAINED FEATURE EXTRACTOR,
VARIATIONAL PARAMETER TRANSFER, and CHAINED OPTI-
MIZATION, thereby expanding the existing pattern language for
quantum algorithms and refining the WARM-START pattern.
By documenting and making the knowledge on these solutions
to recurring problems easily accessible for interested parties,
we hope to assist quantum software engineers in utilizing
warm-starting techniques in their applications.

In future work, we aim to analyze additional warm-starting
techniques and their implementations to evaluate their com-
patibility with each other. Moreover, we will incorporate the
warm-starting patterns presented in this work into the publicly
available Pattern Atlas on the PlanQK platform [55], where
also the other patterns of the pattern language for quantum al-
gorithms have been incorporated. The accessibility for a broad
audience enables refinement of the patterns based on commu-
nity feedback. Moreover, the platform facilitates linking re-
lated patters together, even across different pattern languages.
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