
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{weder, breitenbuecher, leymann, wild}@iaas.uni-stuttgart.de

Integrating Quantum Computing into
Workflow Modeling and Execution

Benjamin Weder, Uwe Breitenbücher, Frank Leymann, and Karoline Wild

© 2020 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Weder2020_QuantumWorkflows,
author = {Benjamin Weder and Uwe Breitenb{\"u}cher and Frank Leymann and

Karoline Wild},
title = {Integrating Quantum Computing into Workflow Modeling

and Execution},
booktitle = {Proceedings of the 13th IEEE/ACM International

Conference on Utility and Cloud Computing (UCC 2020)},
year = 2020,
month = dec,
pages = {279--291},
doi = {10.1109/UCC48980.2020.00046},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

Integrating Quantum Computing into Workflow Modeling and Execution

Benjamin Weder, Uwe Breitenbücher, Frank Leymann, and Karoline Wild
Institute of Architecture of Application Systems, University of Stuttgart, Germany

{weder, breitenbuecher, leymann, wild}@iaas.uni-stuttgart.de

Abstract—Quantum computing has the potential to signifi-
cantly impact many application domains, as several quantum
algorithms are promising to solve problems more efficiently
than possible on classical computers. However, various complex
pre- and post-processing tasks have to be performed when
executing a quantum circuit, which require immense math-
ematical and technical knowledge. For example, calculations
on today’s quantum computers are noisy and require an error
mitigation task after the execution. Hence, integrating classical
applications with quantum circuits is a difficult challenge. In
this paper, we introduce a modeling extension for imperative
workflow languages to enable the integration of quantum com-
putations and ease the orchestration of classical applications
and quantum circuits. Further, we show how the extension can
be mapped to native modeling constructs of extended workflow
languages to retain the portability of the workflows. We validate
the practical feasibility of our approach by applying our
proposed extension to BPMN and introduce Quantum4BPMN.

Keywords-Quantum Computing, Quantum Software, Quan-
tum Applications, Workflow Technology, Modeling Extension

I. INTRODUCTION

Quantum computing introduces a new computing paradigm
and promises to solve many problems more efficiently than
it is possible on classical computers [1], [2], [3]. Different
quantum algorithms exist that provide a speed-up over their
best-known classical counterparts [4], [5]. Examples of such
quantum algorithms are Grover’s algorithm [6] for unstruc-
tured search, Shor’s algorithm [2] for factorizing numbers,
or the HHL algorithm [7] for solving linear equations. In
recent years, new or improved quantum computers were
developed by hardware providers, such as IBM or Rigetti [8],
[9]. Further, access to them is provided through quantum
cloud offerings, such as IBMQ. Thus, quantum computers
became publicly accessible, and use cases from various ar-
eas, such as computer science, chemistry, or physics, can be
implemented and executed on real quantum computers [10].

However, the execution of a quantum circuit, i.e., an
executable implementation of a quantum algorithm, requires
additional pre- and post-processing tasks [9], [11]. These
tasks are typically complex as they require immense math-
ematical and quantum-specific knowledge. For example,
today’s quantum computers do not allow to load arbitrary
data into their registers, and, therefore, an initialization step
has to be added to the beginning of the quantum circuit [11],
[12]. This means the quantum circuit must be adapted

depending on the input data, which requires mathematical
knowledge about the implemented quantum algorithm as
well as technical knowledge about the used quantum pro-
gramming language [8]. Further, today’s quantum computers
are noisy and results of quantum computations are disturbed
by some error [1]. Therefore, this error should be mitigated
based on the error model of the used quantum computer,
which again requires specific expertise about the quantum
computer and suitable error mitigation techniques [9], [13].

Thus, integrating classical applications with quantum
circuits is a difficult challenge, as these pre- and post-
processing tasks have to be performed in order to prop-
erly execute the quantum circuit. Today, there exist several
approaches to orchestrate the functionalities provided by
different software artifacts [14]. Workflow technology is one
of these orchestration approaches that has been proven to
be applicable to integrate various heterogeneous types of
applications [15]. Thereby, the required tasks, as well as
their execution order and the data flow between them, are
specified in so-called workflow models, which can then be
automatically executed by a workflow engine [14], [15]. Due
to its features, such as scalability, reliability, robustness, and
transactional processing, workflow technologies provide a
flexible orchestration approach to combine different kinds of
applications. Hence, the technology seems to be promising
to also integrate quantum circuits with classical applications
of any kind. Moreover, the required pre- and post-processing
tasks could also be included in workflow models, and
therefore, automatically be executed by the workflow engine.

However, there is currently neither a means to model
quantum circuit executions explicitly in workflow languages,
such as BPMN [16], nor support existing workflow engines
the invocation of quantum circuits. Technically, workflow
technologies enable orchestrating quantum circuits with clas-
sical applications as arbitrary kinds of tasks can be modeled.
However, the required pre-processing, execution, and post-
processing tasks have specific characteristics, e.g., their input
and output data or their configuration parameters [11]. Thus,
this requires a lot of technical and mathematical knowledge,
resulting in a time-consuming and error-prone modeling
process, which can only be done by quantum experts.

In this paper, we (i) introduce a technology-independent
modeling extension for imperative workflow languages
called QUANTME to model quantum computations in work-
flow models. This extension enables modeling the execution

of preconfigured quantum circuits while hiding the tech-
nical details, as well as the specification of the pre- and
post-processing tasks to customize a quantum computation.
However, as modeling extensions reduce the portability of
the resulting workflow models, we (ii) present a method to
transform workflow models using our modeling extension to
workflow models containing only native modeling constructs
of the used workflow language to ensure their portability. To
validate the practical feasibility of our approach, we (iii) ap-
ply QUANTME to BPMN and introduce Quantum4BPMN.
Finally, we (iv) present a prototypical implementation of
the transformation method from Quantum4BPMN to BPMN
and show a case study implementing three different quantum
algorithms using our proposed modeling extension.

II. FUNDAMENTALS & PROBLEM STATEMENT

In this section, we introduce fundamentals about quantum
computing and describe the typical process to develop and
execute quantum circuits. Then, we discuss the basics of
workflow technologies and present our problem statement.

A. Quantum Computing

In quantum computing, information is encoded within a
quantum system [1], [5]. A qubit, which corresponds to
a bit in classical computing, cannot only be in the states
0 and 1 but in both states at the same time, a so-called
superposition [4], [5]. Multiple qubits can be combined into
a quantum register [17]. Thus, a quantum register with n
qubits can be in a superposition of 2n states, represented
by a 2n-dimensional state vector in a complex vector space.
Manipulations on the states of quantum registers are per-
formed by unitary transformations [4]. Such manipulations
modify the 2n states of the register at the same time,
and this quantum parallelism is one reason for the power
of quantum computing [18]. In the gate-based quantum
computing model, quantum algorithms define a set of unitary
transformations that are applied to an input state of a
quantum register to transform it into some output state [17].
The result of the quantum algorithm is then retrieved by
performing a measurement on the quantum register [11].
The measurement returns a bit string representing one of
the 2n states of the quantum register [1], [4]. Quantum
algorithms are inherently probabilistic, thus, they must be
executed multiple times, leading to a probability distribution
of results, and then the most frequent result is used [5], [17].

Different quantum algorithms exist that provide a speed-
up over their best-known classical counterparts. For ex-
ample, Grover’s algorithm [6] for unstructured search,
Shor’s algorithm [2] for factorizing numbers, or the HHL
algorithm [7] for solving linear equations. Another ex-
ample is the Quantum Approximate Optimization Algo-
rithm (QAOA) [19] that can be used for solving vari-
ous optimization problems. Furthermore, different quantum
hardware providers, such as IBM, Rigetti, or Honeywell,

developed quantum computers in recent years and offer ac-
cess to them, e.g., via the cloud [8], [17]. Thus, they became
publicly accessible, and use cases from various areas, such as
computer science, chemistry, or physics, can be implemented
and executed on real quantum computers [10].

However, today’s quantum computers are affected by
noise from various sources, which can cause errors in
computations [1], [13]. For example, unintended interactions
of qubits with their environment lead to state changes over
time, which is referred to as decoherence [4]. Further, the
physical operations within a quantum computer cannot be
executed perfectly [20]. Hence, the restricted capabilities of
today’s quantum computers have to be taken into account
when developing and executing implementations of quantum
algorithms. For example, faulty measurements can lead to a
probability distribution of results of a computation that does
not directly reflect the final state of the quantum computer.
Therefore, the execution of a quantum computation should
include a step to mitigate the influence of these errors [9].

There are different quantum computing models, e.g.,
adiabatic [21], gate-based [8], or measurement-based [22].
These models have been shown to be formally equivalent,
but define quantum algorithms in different ways [21], [22].
In this work, we restrict our considerations to the gate-
based quantum computing model as many available quantum
computers are based on it [8]. However, our approach can
be extended regarding other computing models in the future.

B. Development and Execution of Quantum Circuits

In the gate-based quantum computing model, a quantum
algorithm is implemented as a so-called quantum circuit [1],
[5], [23]. It consists of an input state, a set of gates operating
on one or multiple qubits to manipulate the state, and a
set of measurements to retrieve classical information from
qubits [4], [17]. Thereby, quantum circuits can be defined,
e.g., using quantum programming languages, such as Q#,
quantum assembly languages, such as OpenQASM or Quil,
or libraries that are embedded into non-quantum program-
ming languages, such as Qiskit or Forest in Python [8]. In
previous work, we analyzed the various phases a quantum
circuit should go through and introduced the quantum soft-
ware lifecycle [9]. Figure 1 presents a simplified develop-
ment and execution process for quantum circuits.

First, in the quantum circuit implementation phase, the
quantum circuit for the required quantum algorithm is imple-
mented. This is done during development time. The quantum
circuit is reusable for different problem instances that can be
solved by the quantum algorithm. In this stage, the quantum
circuit may also contain so-called oracles [24], which are
used by some quantum algorithms, such as Grover [6]. An
oracle is a subroutine realizing a hidden function, which
is usually specific to the problem instance to solve. For
example, Grover’s algorithm for unstructured search uses
an oracle that decides whether a given element is the

O
ra

cl
e

Quantum Circuit

Result
Mitigated

Result
Error Model

0,95

0,98

0,02

0,05

Quantum Computer

Readout-Error
Mitigation

Pre-Processing Post-Processing

Quantum Circuit
Execution

Execution

Quantum Circuit
Implementation

Oracle Expansion Data Preparation

Development

Figure 1. Simplified development and execution process of a quantum circuit

searched one or not. Therefore, the oracles of the quantum
circuit have to be replaced by subcircuits implementing their
functionality in an oracle expansion phase [11], [24]. Then,
in the data preparation phase, the quantum computer has to
be initialized with the input data for the specific problem
instance to solve [9]. However, today’s quantum computers
only allow initializing their registers in the all-zero state,
which means all qubits are set to zero [25]. Hence, the
initialization must be done by prepending an appropriate
subcircuit to the beginning of the original circuit, which
prepares the required state [9]. This phase has to be done
at execution time, as the input data is usually not known at
development time. Therefore, the quantum circuit must be
adapted during execution time depending on the input data,
which requires immense technical knowledge. Afterward,
the quantum circuit is executable and can be deployed and
executed on a quantum computer. The result is a probability
distribution produced when executing the quantum circuit
multiple times (see Section II-A). However, this probability
distribution is disturbed by so-called readout-errors [11],
[26]. To reduce their influence on the result, in the last
phase, readout-error mitigation should be applied based on
the error model of the used quantum computer [9], [26].

C. Workflow Technology

Workflow technologies enable the modeling and execution
of processes [14], [15]. Thereby, processes are specified
in workflow models using a workflow language, such as
the Business Process Model and Notation (BPMN) [16]
or the Business Process Execution Language (BPEL) [27].
Workflow models consist of a set of activities that have to be
performed to achieve a certain goal [28]. The functionality
of these activities can be implemented in different ways.
For example, an activity can invoke a web service, execute
a script, or require a human action. The activities of a work-
flow model are connected by control flow edges that specify
a partial order in which they are executed [15]. Further, data
flow can be defined to transfer data between the activities
of a workflow model [14]. Therefore, workflow technologies
enable to orchestrate the functionalities provided by different
software artifacts to achieve a certain goal [14], [15], [28].

One benefit of utilizing workflow technologies is the
capability to automatically execute workflow models using
a workflow engine [15], [28]. Thereby, the workflow engines
provide a scalable and robust execution environment [14].
Additionally, by using a standardized workflow language,
such as BPMN or BPEL, the portability of workflow models
across different workflow engines can be achieved. Fur-
thermore, many workflow languages and workflow engines
implement comprehensive error handling mechanisms [15].
Hence, they, e.g., enable defining alternative control flows in
the presence of failures [14], [28]. Additionally, transactions
comprising multiple activities of a workflow model can be
specified [15], [29]. Therefore, in the case of an error during
the execution of the transaction, it can be automatically
rolled back, or if that is not possible, specified compensation
actions for the activities can be conducted [14], [15].

Due to these benefits, workflow technologies are essential
for the modeling and execution of different kinds of pro-
cesses, e.g., business processes but also scientific processes,
such as complex simulations [14], [15], [30], [31]. With the
growing capabilities of available quantum computers and the
development of new quantum algorithms and corresponding
quantum circuits, integrating quantum circuits in workflows
to solve certain tasks is of main interest. However, there
is currently neither a means to model quantum circuit
executions explicitly in workflow languages, nor do existing
workflow engines support the invocation of quantum circuits.

D. Problem Statement

As shown in Section II-B, several pre- and post-processing
tasks, e.g., the data preparation or the oracle expansion,
have to be performed when executing a quantum circuit.
These tasks are typically complex and require mathemat-
ical knowledge as well as technical knowledge about the
used programming language and quantum computer. Thus,
integrating classical applications with quantum circuits is
a significant challenge. Although workflow technologies
provide the necessary basis for integrating heterogeneous ap-
plications, all phases of the quantum software lifecycle still
need to be implemented as activities in workflow models.
However, as there is currently no modeling support for these

activities abstracting from the technical and mathematical
details, the modeling process is time-consuming, error-prone
and can only be done by quantum experts. Moreover, the
specification of each pre-processing, execution, and post-
processing task as activity clutters the workflow model.
Hence, an abstraction layer to model the execution of
quantum circuits for which all these steps are preconfigured
is required to hide the details and enable their orchestration
by workflow modelers without deep knowledge in quantum
computing. Thus, our first research question is as follows:

RQ 1: “What modeling extensions for workflow
models are required to model the execution of quan-
tum circuits, as well as the required pre- and post-
processing tasks, to facilitate the orchestration of quan-
tum circuits and classical applications?”

However, by introducing a domain-specific modeling
extension for quantum computing the resulting workflow
models cannot be executed by existing workflow engines
without extending them to enable the processing of the new
modeling constructs. As we do not intend to develop a
new workflow engine that supports the proposed extensions
and aim to retain the portability of the workflow models,
an approach to map the introduced modeling constructs to
native modeling constructs of the used workflow language
is needed. Thus, our second research question is as follows:

RQ 2: “How can the modeling extensions be
mapped to native modeling constructs of existing work-
flow languages to retain the portability between differ-
ent workflow engines?”

III. INTEGRATING QUANTUM COMPUTING INTO
WORKFLOWS

In this section, we introduce our method to integrate quan-
tum computing into workflow modeling and execution. The
method is depicted in Figure 2, which gives a high-level
overview of our approach. In this method, we introduce the
Quantum Modeling Extension (QUANTME) for imperative
workflow languages, which is discussed in detail in Sec-
tion IV. QUANTME supports modeling workflow models
that execute quantum circuits following the lifecycle phases
described in Section II-B (RQ1). Thus, it enables streamlin-
ing the pre-processing, execution, and post-processing tasks
and integrating quantum circuits with classical applications.

In the first step, the workflow modeler creates a so-
called QUANTME workflow model, which is modeled using
a workflow language fulfilling the requirements discussed
in Section IV-A that has been extended by our proposed
QUANTME modeling extension. Thus, a QUANTME work-
flow model contains native constructs of the used workflow
language to support traditional activities, such as service
invocations or the execution of scripts, as well as the

Transform Deploy

Native
Workflow Model

QuantME
Workflow Model

Workflow Engine

1 2 3

Deployment of
native workflow model

Create QuantME
workflow model

Transformation into
native workflow model

Research Question 2Research Question 1 Existing Solutions

Figure 2. Overview of our integration method (based on [33])

QUANTME modeling constructs. However, the introduced
modeling extensions would reduce the portability of the
QUANTME workflow models, and we do not intend to de-
velop a new workflow engine that supports the proposed ex-
tensions. Thus, in the second step, the QUANTME workflow
model is transformed into a native workflow model (RQ2).
For this, we introduce an approach to automatically replace
the QUANTME modeling constructs by suited workflow
fragments [32] from a repository, that implement the logic
of the respective QUANTME constructs. This replacement
approach is presented in Section V. The resulting workflow
models only contain natively supported modeling constructs
of the used workflow language. Hence, our approach allows
to benefit from the abstractions of the introduced modeling
extension while retaining the portability of the workflow
models across workflow engines supporting the same work-
flow language. In the last step, the native workflow model
is deployed to a workflow engine and can be instantiated.
To validate the practical feasibility of our approach, we
introduce Quantum4BPMN in Section VI-A, which is a
modeling extension for BPMN that supports QUANTME.

IV. QUANTME: A MODELING EXTENSION FOR
QUANTUM COMPUTING

In the following, we first discuss requirements that have to
be fulfilled by a workflow language to be extendable by
QUANTME. Then, we introduce the QUANTME modeling
constructs, discuss their purpose and their semantics.

A. Requirements on Workflow Languages

To be extendable by QUANTME the target workflow lan-
guage has to satisfy some requirements, which we discuss
in this subsection. First, (i) the workflow language must
support the notion of an activity or task to define a sin-
gle execution step in the modeled process. Furthermore,
(ii) these activities have to allow the definition of attributes
to configure them depending on the context where they
are used in the workflow. The workflow language must
also (iii) enable the specification of control flow between
different activities to define a partial order in which they

QuantumCircuit
LoadingTask

ReadoutError
MitigationTask

QuantumCircuit
ExecutionTask

DataPreparation
Task

OracleExpansion
Task

QuantumComputation
Task

Single task for executing a
preconfigured quantum circuit…

…or separate tasks for executing a custom quantum circuit

Input Data Output Data

Phases following the Quantum Software Lifecycle

Phase: Quantum
Circuit Implementation

?

Phase: Oracle
Expansion

Phase: Data
Preparation

Phase: Quantum Circuit
Execution

Phase: Readout-Error
Mitigation

Quantum Circuit Execution Result Output Data
Input Data

Legend
?

QuantumCircuit
Object

ResultObject

Figure 3. Overview of the QuantME modeling constructs

are executed. Additionally, (iv) it must be possible to model
the transfer of data between the activities of a workflow
model. Finally, (v) the workflow language has to support
to handle exceptions by defining alternative control flows in
the presence of errors. These requirements are, e.g., satisfied
by BPMN [16], which is used in many domains, provides
a well-known graphical notation, and is supported by state-
of-the-art workflow engines, such as the Camunda BPMN
engine [34]. Therefore, we use the BPMN concepts and their
graphical notation to describe our modeling extension. How-
ever, the requirements are also fulfilled by other workflow
languages, and Section VII discusses by which BPEL [27]
modeling constructs the requirements are satisfied.

B. Executing Custom Quantum Circuits

To execute a quantum circuit from within a workflow model,
tasks implementing all the phases of the quantum software
lifecycle presented in Section II-B have to be specified in the
workflow model. First, the quantum circuit has to be loaded
into the workflow model and the oracles of the circuit must
be replaced with corresponding implementations. Then, the
circuit has to be initialized with the input data. Subsequently,
it can be deployed and executed on a quantum computer.
Finally, readout-error mitigation is used to reduce the in-
fluence of errors in the results. Therefore, several complex
tasks have to be modeled to execute a quantum circuit.

In the following, we introduce a new QUANTME mod-
eling construct for each lifecycle phase, as depicted in
Figure 3. Furthermore, a set of configuration parameters is
defined for the modeling constructs, which are important

to customize the corresponding lifecycle phase. Thus, the
introduced modeling constructs guide and support quantum
experts in modeling invocations of custom quantum circuits
while enabling them to configure the pre-processing, exe-
cution, and post-processing tasks to their needs. Thereby,
each of the modeling constructs allows defining alternative
control flows in the case of an error, e.g., if the execution
of a quantum circuit fails. The possibility to define such
alternative control flows is one requirement for workflow
languages that are extensible by QUANTME and can, e.g., be
achieved by an error boundary event in BPMN. However, the
use of events is not limited to error handling. If further events
are natively supported by the used workflow language, such
as the timer event in BPMN, they can also be utilized.

1) Transferring Data about a Quantum Computation:
The execution of the different pre-processing, execution,
and post-processing tasks defined in the quantum software
lifecycle, requires to transfer data between them. For exam-
ple, the code of the quantum circuit has to be exchanged
between multiple tasks to modify it based on the input
data or to execute it. Although the required data can also
be transferred using general data objects, a new kind of
data object clearly defines the relevant attributes, and hence,
eases the modeling process. Thus, we introduce a new
QuantumCircuitObject, which is an extension of the
general data object for storing and transferring all relevant
data about a quantum circuit. It defines two attributes:
(i) QuantumCircuit that contains the code representing
the quantum circuit and (ii) ProgrammingLanguage,

which defines the programming language that was used to
implement the quantum circuit (see Section II-B) to enable
the proper interpretation of the code. Further, a second data
object called ResultObject is introduced to transfer the
results of quantum computations. It defines one attribute:
ExecutionResult that is used to store the probability distri-
bution of different results from a quantum circuit execution.

2) Loading a Quantum Circuit: For executing a quantum
circuit, first, the code of the circuit has to be loaded into the
workflow model. Therefore, we introduce a new task type
called QuantumCircuitLoadingTask. Its semantics is
the creation of a QuantumCircuitObject containing
the code of the quantum circuit and all related data. Other
QUANTME tasks in a workflow model can then use the
QuantumCircuitObject, e.g., to modify the quantum
circuit or to execute it (see Figure 3). The task defines two
attributes: (i) an optional QuantumCircuit, which can be
used to directly insert the code of the quantum circuit into
the workflow model, and (ii) an optional URL that allows
specifying a location to load the circuit code from. However,
one of the two optional attributes has to be set to enable
loading the quantum circuit into the workflow model.

3) Expanding Oracles: The loaded quantum circuit
from the previous phase may contain some oracles,
which have to be replaced by subcircuits implementing
their functionality [11], [24]. Therefore, we introduce a
new OracleExpansionTask, which has the seman-
tics to replace an oracle of the given quantum circuit
by a problem specific subcircuit. The task uses two
QuantumCircuitObjects containing the input and out-
put quantum circuits (see Figure 3). Thereby, in the output
quantum circuit, the specified oracle is replaced. If the
circuit contains further oracles, they can be replaced by
additional OracleExpansionTasks. The task has three
attributes: (i) OracleId identifying the oracle to expand
in the quantum circuit, (ii) an optional OracleCircuit
that can be used to directly specify the subcircuit to replace
the oracle, and (iii) an optional OracleURL which allows
loading the oracle, e.g., from a repository. Thereby, the
OracleId can be the id of an object in the quantum circuit
if the programming language explicitly supports defining
oracles or the position in the quantum circuit where the
oracle has to be inserted otherwise. Furthermore, either the
optional OracleCircuit or the OracleURL attributes
have to be specified to successfully replace the oracle.

4) Preparing the Input State: After loading the quantum
circuit into the workflow model and expanding contained
oracles, the input data has to be encoded into the quan-
tum circuit [9], [11]. To model this, we introduce a new
task type called DataPreparationTask. Its semantics
is the addition of a subcircuit to the beginning of the
original circuit to prepare the required state in the reg-
ister of the quantum computer based on the given input
data [12], [25]. For this, the quantum circuit to initial-

ize is passed to it through a QuantumCircuitObject
and the input data through another data object, as shown
in Figure 3. Then, the output of the task is a new
QuantumCircuitObject with the initialized circuit.
The task has two attributes: (i) EncodingScheme defining
how to encode the input data into the initializing circuit and
(ii) ProgrammingLanguage specifying the programming
language of the quantum circuit that needs to be initialized
by the task (see Section II-B). Thereby, different quantum
algorithms often require the same encoding scheme, such as
basis or analog encoding [11], [12], and thus, the workflow
modeler can define the kind of encoding that is required for
his quantum circuit using the EncodingScheme attribute.

5) Executing a Quantum Circuit: After preparing the
input data, the quantum circuit can be deployed and executed
on a quantum computer in the next phase. For this, a new
task type called QuantumCircuitExecutionTask is
introduced. It has the semantics to execute the circuit passed
to it by a QuantumCircuitObject on a specified or
automatically selected quantum computer and to return a
ResultObject containing the probability distribution of
results produced by the execution (see Figure 3). The task
has three attributes: (i) an optional Provider that can be
used to define the quantum cloud offering for the execution,
(ii) an optional QPU that enables specifying a concrete
quantum computer to use, and (iii) an optional Shots
to define the number of executions. The specification of
a Provider allows selecting the quantum cloud offering
based on available credentials or other criteria, such as the
incurred costs. Furthermore, the QPU attribute enables to
exactly define the quantum computer for the execution. If it
is not specified by the modeler, a suitable quantum computer
is automatically selected while restricting the selection to
quantum computers of the Provider if defined [35].

6) Mitigating the Readout-Error: The execution of a
quantum circuit results in a probability distribution of results
from multiple runs, which differs from the ideal distribution
that should result from the measurements of the output
state of the quantum computer due to readout-errors [9],
[11], [36]. To reduce the influence of these errors, a new
ReadoutErrorMitigationTask is introduced. It has
the semantics to mitigate the error in a probability distribu-
tion of results from a quantum computation which is passed
to it by a ResultObject. The task defines three attributes:
(i) UnfoldingTechnique specifying the unfolding tech-
nique to use to mitigate the error, (ii) QPU identifying the
quantum computer that was used for the execution, and
(iii) an optional MaxAge to define a maximum age of the
required data to use for the mitigation. Thereby, different
unfolding techniques exist, such as the iterative dynamically
stabilized unfolding method [37] or the correction matrix un-
folding technique [26], which can lead to different qualities
of error mitigation for various quantum circuits and quantum
computers. Hence, the workflow modeler can specify which

technique to use in the UnfoldingTechnique attribute.
These techniques rely on collected provenance data about the
used quantum computer, which can change significantly over
time [13]. Therefore, the specification of a small MaxAge
can increase the quality of the mitigation. However, the col-
lection of the provenance data requires the execution of lots
of quantum circuits on the quantum computer and can incur
high costs [26]. Hence, the workflow modeler can address
this trade-off by defining a suitable MaxAge for his use case.
The result of the ReadoutErrorMitigationTask is
stored in a data object and can be used by classical applica-
tions, e.g., modeled as service tasks, that require the result
of the quantum circuit or perform some post-processing.

C. Executing Preconfigured Quantum Circuits

The introduced data objects, as well as the new task types for
the pre-processing, execution, and post-processing phases,
are intended for quantum experts who want to customize the
execution of arbitrary quantum circuits. However, to execute
a quantum circuit for which all these steps are already
preconfigured, we present a new task type that combines
these tasks in a hidden manner only exposing one abstract
task to the workflow modeler. Thus, it can be used by
modelers without expertise in quantum computing who can
reuse the circuits defined by quantum experts to integrate
them with other heterogeneous applications in workflows.

The newly introduced task type has the visual rep-
resentation shown on top of Figure 3 and is called
QuantumComputationTask. Its semantics is the ex-
ecution of a certain quantum algorithm implemented by
the quantum circuit on the input data that is passed to
it through a data object and to store the results of the
algorithm in another data object. The task has two attributes:
(i) Algorithm that specifies the quantum algorithm to
execute and (ii) an optional Provider defining the quan-
tum cloud offering that should be used for the execution of
the quantum algorithm. Thereby, the Algorithm attribute
specifies the id of a workflow fragment containing all the
pre-processing, execution, and post-processing tasks to ex-
ecute a quantum circuit implementing this algorithm. Thus,
such workflow fragments can be stored by quantum experts
in a repository to enable their reusability and used to replace
the QuantumComputationTask while transforming the
workflow model to a native workflow model (see Section V).
In addition to the workflow fragments, the repository also
contains a specification of their input and output data format
to ease the integration with other heterogeneous applications.
The definition of a Provider enables the workflow mod-
eler to select the quantum cloud offering based on criteria,
such as available credentials or incurred monetary costs.
Therefore, a quantum computer of the specified quantum
cloud offering is selected for the execution. If the attribute
is not set, the quantum cloud offering, as well as the concrete
quantum computer, can be automatically chosen [35].

V. TRANSFORMATION TO NATIVE WORKFLOW MODELS

In the following, we show how to transform a QUANTME
workflow model to a native workflow model to ensure
its portability between different workflow engines support-
ing the used workflow language. Thus, the transformation
method corresponds to step 2 of our integration approach.

A. Transformation Method

To transform QUANTME workflow models to native work-
flow models, we introduce a (semi-)automatic transformation
method, which consists of three steps. In the first step,
the QUANTME workflow model is specified using our
modeling extension. However, the QUANTME modeling
constructs reduce the portability of the workflow model,
and therefore, are automatically replaced in the second step.
Hence, we introduce the so-called QUANTME Replacement
Models (QRM), which we discuss in detail in the next
subsection. QRMs define a replacement of QUANTME
tasks by suited workflow fragments that implement the
required functionality. Therefore, the QUANTME modeling
constructs in a workflow model are iteratively selected and
replaced until a native workflow model is obtained. If the
QUANTME workflow model contains a QUANTME task
for which no suited QRM is available, the transformation
is aborted, and the user is informed. After the successful
transformation, the native workflow model can be manually
refined by the user in the last, optional step of the method.

B. QuantME Replacement Models

In the following, we define the structure of QUANTME
Replacement Models (QRMs), which are the basis of our
transformation method. Furthermore, we show how to decide
if a QRM can be used to replace a QUANTME task. Finally,
the mapping of the control and data flow when replacing
QUANTME tasks by suited workflow fragments is discussed.

An exemplary QRM is depicted in Figure 4. QRMs
consist of two parts: (i) a detector that specifies for which
QUANTME tasks the QRM can be applied and (ii) a replace-
ment fragment defining the workflow fragment that imple-
ments the required functionality to replace the QUANTME
task in the detector. Thereby, the detector defines exactly
one QUANTME task type and a set of values for the
attributes of this task type. For the attributes, detectors can
define exactly one value, a list of possible values, or a
wildcard (asterisk as value). Therefore, a QUANTME task
matches a detector, if it has the same task type and for all
attributes either (i) the same value, (ii) one of the values
in the specified list of possible values, or (iii) an arbitrary
value if a wildcard is defined in the detector. For example,
the QRM depicted in Figure 4 can be used to replace
ReadoutErrorMitigationTasks, which require to
apply the correction matrix unfolding technique for quantum
computations executed either on ibmq rome or ibmq london
and with an arbitrary value for the MaxAge attribute.

QuantME Replacement Model

Replacement FragmentDetector

UnfoldingTechnique: Correction Matrix
QPU: [ibmq_rome,

ibmq_london]
MaxAge: * Request

Correction
Matrix

Receive
Correction

Matrix

Apply
Correction

Matrix

arguments response

age < $MaxAge?

Correction matrix
outdated

Yes

No

$QPU

Figure 4. Exemplary QuantME Replacement Model (QRM)

If a matching detector for a QUANTME task is found, the
replacement fragment of the QRM can be used to substitute
the task in the workflow model. Thereby, the control and
data flow have to be adapted. If the replacement fragment
contains only one task, the control flow can be adapted by a
static algorithm, that redirects in- and out-going control flow
of the replaced task to the task of the replacement fragment.
This can, e.g., be achieved in BPMN by implementing
the replacement fragment as a sub-process or in BPEL by
using a scope. In the same way, in- and out-going data
flow can be adapted by attaching it to the replacing task
in this case. If more than one task is contained in the
replacement fragment, explicit mappings can be specified as
proposed by Harzenetter et al. [38] for deployment models,
that define how control and data flow of different kinds have
to be handled during replacement. Furthermore, attributes of
QUANTME tasks can be referenced from within replacement
fragments to configure them depending on the attribute
values of the replaced tasks. For example, in Figure 4, the
value of the QPU attribute of the replaced QUANTME task
is used to request the correction matrix of the used QPU.
Thus, the references are substituted by the corresponding
values of the QUANTME task during transformation.

QRMs are also allowed to contain QUANTME tasks
in the replacement fragment, which are then replaced in
subsequent iterations of the transformation method. There-
fore, quantum experts can use the introduced modeling
extensions to model replacement fragments for different
QuantumComputationTasks, as well as reusable im-
plementations of the various tasks for the lifecycle phases,
e.g., for a certain data encoding or an unfolding technique.

VI. PROTOTYPICAL VALIDATION

In this section, we prove the practical feasibility of our ap-
proach. Thus, we first show how QUANTME can be applied
to BPMN and introduce our prototype that implements the
transformation to native BPMN. Afterward, we present a
case study implementing three quantum algorithms using
our modeling extensions and an evaluation of the modeling
effort when using QUANTME compared to native BPMN.

A. Quantum4BPMN

To enable the practical application of our approach, we intro-
duce an extension of BPMN [16] that supports QUANTME,
called Quantum4BPMN. As we used the BPMN concepts
and their graphical notation to define the QUANTME mod-
eling constructs, the required extensions can easily be per-
formed. For this, we added six new task types extending the
general BPMN task construct with the required attributes
of the QUANTME task types. Further, we extended the
BPMN data object to fit the semantics of the introduced data
objects. The proposed extension is accessible on Github1.

B. Prototype

In the following, we introduce our prototype implementing
the transformation method described in Section V for Quan-
tum4BPMN. For this, we extended the Camunda Modeler,
which is an open-source BPMN modeling framework. We
added a plugin to enable modeling BPMN workflow models
using Quantum4BPMN modeling constructs or loading them
in XML format into the Camunda Modeler. Furthermore, a
repository for QUANTME Replacement Models was added,
which facilitates storing pairs of BPMN workflow models
representing the detector and replacement fragment. Addi-
tionally, the transformation logic was implemented, which
uses the replacement models from the repository to itera-
tively replace the contained QUANTME modeling constructs
and returns native BPMN workflow models. The resulting
workflow models can then be visualized and further modified
manually in the Camunda Modeler. Finally, they can be
exported for execution on a BPMN engine. The prototype
is publicly available as an open-source project on Github2.

C. Case Study

In this section, we demonstrate the usage of QUANTME
by presenting three workflow models implementing Simon’s
algorithm [39], the Bernstein-Vazirani algorithm [40], [41],
and Grover‘s algorithm [6]. Furthermore, to illustrate the

1https://github.com/UST-QuAntiL/QuantME-Quantum4BPMN
2https://github.com/UST-QuAntiL/QuantME-TransformationFramework

https://github.com/UST-QuAntiL/QuantME-Quantum4BPMN
https://github.com/UST-QuAntiL/QuantME-TransformationFramework

qcData

QuantumCircuit: ---
URL: …/simon.py

OracleId: 1
OracleCircuit : ---
OracleURL: exReq.oracle

Send result
Receive
request

Load
Quantum Circuit

?

Replace Oracle
Check Linear

Independence

Solve Linear
System of
Equations

n-1 linear
independent

results?

Yes

No

Execute Circuit

Inform about
failed execution

Mitigate
Readout-Error

exReq

circuit2

circuit1

resultData

Invalid access
key

Provider: IBM
QPU: ibmq_rome
Shots: 1024

UnfoldingTechnique: Correction Matrix
QPU: ibmq_rome
MaxAge: 1h

Figure 5. A scenario showing a potential implementation of Simon’s algorithm using the QuantME modeling constructs

proposed transformation method, a transformed version of
the workflow models is accessible on Github3. Therefore,
they can be used to execute the three quantum algorithms
by a BPMN engine, e.g., the Camunda engine [34].

1) Simon’s Algorithm: In Figure 5 an overview of a
workflow model implementing Simon’s algorithm [39] is
shown. Given a function f(x) : {0, 1}n → {0, 1}n, the
purpose of Simon’s algorithm is to determine whether the
function is bijective, i.e., it performs a one-to-one mapping
between the elements of the source and target sets, or if it is
a two-to-one function always mapping two source elements
to the same target element. In the case of a two-to-one
function, there exists a secret bit string s, which, if applied
to an arbitrary source element using xor, leads to the second
element that is mapped to the same target element. Thus, the
goal is to determine if f is bijective and if not to retrieve
the secret bit string s. Using a classical algorithm, up to
2n−1+1 evaluations of the function are needed to solve the
problem [39]. In contrast, Simon’s algorithm only requires
O(n) evaluations, leading to an exponential speed-up.

The workflow is initiated when a user sends an execution
request (exReq) containing the URL to the oracle implement-
ing the function f to investigate and the access key for the
quantum cloud offering to use. First, the quantum circuit is
loaded from the specified URL and stored in circuit1. The
oracle in the circuit is replaced by the implementation from
the given URL in the next step, and the resulting circuit
is stored in circuit2. Then, the circuit is executed on the
ibmq rome quantum computer, which is accessible through
IBM’s cloud offering IBMQ. If an invalid access key is
provided, the workflow terminates and the user is informed.
Otherwise, the readout-error in the result is mitigated using
the correction matrix unfolding technique. Next, a service
task checks how many of the already received results are
linearly independent, and if less than n − 1, the circuit is
executed again. After receiving n − 1 linearly independent
results, the linear system of equations is solved, leading to
the searched bit string s, which is sent back to the user.

3https://github.com/UST-QuAntiL/QuantME-UseCases

2) Bernstein-Vazirani Algorithm: The Bernstein-Vazirani
algorithm [40], [41] solves the problem of finding a hidden
bit string that is encoded in a function. Thereby, the function
g(x) : {0, 1}m → {0, 1} returns the scalar product of the
input bit string and the hidden bit string modulo 2. The
best-known classical algorithm for this problem requires m
evaluations of g for a bit string of size m. However, using the
Bernstein-Vazirani algorithm, only one evaluation is needed.

A workflow model implementing the Bernstein-Vazirani
algorithm is presented in Figure 6. Thereby, the configura-
tion attributes for the four contained tasks are displayed in
the light gray, as well as white boxes above the tasks. In
contrast to Simon‘s algorithm, no classical post-processing
is required for this algorithm, and thus, further conventional
BPMN service tasks are not needed. The URL to load the
quantum circuit is changed to load a circuit implementing
the Bernstein-Vazirani algorithm. Further, the circuit should
be executed on the ibmq athens quantum computer instead
of ibmq rome and with only 512 shots. However, as we
implemented a generic QRM for all quantum computers
available over IBMQ and with a configurable shots pa-
rameter, no new QRM is needed to transform the shown
QUANTME workflow model into a native workflow model.

3) Grover’s Algorithm: The purpose of Grover‘s algo-
rithm [6] is to search an item in an unsorted list of N items.
For this, an oracle that checks whether a given item is the
searched one is used. A quantum circuit implementing the
algorithm consists of multiple iterations, which is referred
to as Grover iteration. Each Grover iteration includes the
execution of the oracle and so-called amplitude amplifica-
tion [42]. Thereby, π4×

√
N iterations are required [6]. Thus,

Grover‘s algorithm can find the searched item with O(
√
N)

oracle executions. In contrast, classical unstructured search
has a runtime of O(N), leading to a quadratic speed-up [6].

For the execution of Grover‘s algorithm using
QUANTME, the same tasks as for the Bernstein-Vazirani
algorithm can be used, and only the configuration through
the corresponding attributes has to be changed. The
workflow model is depicted in Figure 6, whereby the

https://github.com/UST-QuAntiL/QuantME-UseCases

QuantumCircuit: ---
URL: …/bernstein.py

Provider: IBM
QPU: ibmq_athens
Shots: 512

UnfoldingTechnique: Correction Matrix
QPU: ibmq_athens
MaxAge: 1h

OracleId: 1
OracleCircuit : ---
OracleURL: exReq.oracle

Send result
Receive
request

Load
Quantum Circuit

Mitigate
Readout-Error

exReq

circuit1 qcData

Inform about
failed execution

Execute Circuit

Invalid access
key

?

Replace Oracle

Configuration for Grover Configuration for Bernstein-Vazirani Common configuration for both algorithms
Legend

circuit2

QuantumCircuit: ---
URL: …/grover.py

OracleId: 1, 2, 3, 4
OracleCircuit : ---
OracleURL: exReq.oracle

Figure 6. Workflow model implementing the Bernstein-Vazirani or Grover algorithm depending on the task configuration

configuration for the first two tasks is displayed in dark
gray. For the QuantumCircuitLoadingTask, the URL
is changed to a location of a quantum circuit implementing
Grover‘s algorithm. The modeled workflow uses the
ibmq athens quantum computer with five qubits, and thus,
the maximum value for N is 25 = 32. According to the
formula introduced before, four Grover iterations have to be
executed. Therefore, the quantum circuit that is loaded in
the first task contains four oracles that must all be replaced
by the oracle implementation from the execution request.
Thus, the OracleExpansionTask has four IDs defined
and replaces all placeholders in the initial quantum circuit
by the oracle provided at the specified URL. Alternatively,
also multiple OracleExpansionTasks could be used,
each replacing one of the oracles in the quantum circuit.

D. Evaluation

In the following, we present the results of our evaluation
regarding the reduced modeling effort when modeling quan-
tum algorithms in workflows using QUANTME, as well as
the reusability of QRMs for workflow models that execute
different quantum algorithms based on our case study.

Table I compares the number of required workflow
tasks when integrating the different quantum algorithms
without using our modeling extension to the number of
tasks when using QUANTME. Thereby, when exploiting the
QuantumComputationTask, only one task has to be
modeled to execute the quantum algorithms from within the
workflow models. If the QUANTME tasks for the various
lifecycle phases are utilized (see Section IV-B), six and four
tasks have to be modeled for the quantum algorithms, as
shown in Figure 5 and Figure 6. In contrast, when using only
conventional BPMN tasks, nine tasks are needed to imple-
ment Simon‘s algorithm and seven tasks for the Bernstein-
Vazirani algorithm and Grover’s algorithm respectively.

Furthermore, we evaluated the reuse of the created QRMs
when modeling the three quantum algorithms. After imple-
menting Simon‘s algorithm, no new QRM for the lifecycle
phases had to be specified for the two other quantum
algorithms. Both algorithms rely on the same tasks, and the
detectors of the QRMs that were created for Simon‘s algo-
rithm match the attributes for the two other algorithms (see
Section V-B). For example, we use quantum computers
available over IBMQ for all quantum algorithms, and, thus,
the QRM for the QuantumCircuitExecutionTask
can be reused, as it is capable of executing quantum circuits
on any quantum computer from IBMQ. Hence, we demon-
strated that defined once this expert knowledge can be reused
by several workflow models implementing different quantum
algorithms. As a result, if another quantum cloud offering
should be used instead of IBMQ, only one new QRM has
to be specified that can be utilized by all three workflow
models. However, the Bernstein-Vazirani and Grover’s al-
gorithm are comparatively simple quantum algorithms that
do not require further pre- or post-processing. For more
complex algorithms, e.g., Shor‘s algorithm [2], additional
tasks have to be implemented and added to the workflow
models. Therefore, in future work, we plan to focus espe-
cially on variational algorithms [43], such as VQE [44] or
QAOA [19], as they can be used to already benefit from
quantum computing, even with today‘s restricted devices.

Table I
MODELING CONSTRUCT REDUCTION BY QUANTME

Quantum
Algorithm

Tasks
using
QCT*

Tasks using
QUANTME

Lifecycle Tasks

Tasks
without

QUANTME

Simon 1 6 9

Bernstein-Vazirani 1 4 7

Grover 1 4 7
* QCT = QuantumComputationTask

VII. DISCUSSION

In this section, we first discuss the generality of QUANTME.
Then, possible application areas for workflows executing
quantum circuits are sketched, and it is described what addi-
tional tasks may be required to execute them in these areas.

For a workflow language to be extendable by QUANTME,
some requirements have to be satisfied, as described in Sec-
tion IV-A. In the following, we show how these requirements
are met by the workflow language BPEL [27]: It supports
(i) the notion of activities to describe single execution
steps in a workflow and enables (ii) their configuration
by attributes. Furthermore, (iii) control flow can, e.g, be
specified by a flow activity. In contrast to data objects in
BPMN, BPEL supports (iv) passing data between activities
using variables. Hence, in BPEL, the different QUANTME
tasks have to handle their input and output data by variables.
Finally, it (v) enables defining alternative control flows in the
presence of errors using fault handlers. Thus, BPEL can be
extended by QUANTME, especially because BPMN can be
transformed into BPEL, as discussed by several works [16],
[45], [46], and therefore, also Quantum4BPMN. In future
work, we will further evaluate the generality of QUANTME
by investigating mappings to other workflow languages.

An application area, where quantum computing is ex-
pected to enable breakthroughs in the future is machine
learning [47]. Therefore, the research area of quantum
machine learning (QML) attracts a lot of attention at the
moment [48]. With the integration of quantum computing,
workflows can help to develop, model, and execute new
QML solutions by automating the different required steps.
Another promising application area is scientific simulations,
as quantum computing enables to simulate complex physical
systems, that cannot be simulated on classical hardware [1].
However, in both application areas, huge amounts of data
have to be processed to retrieve useful results. Hence, addi-
tional tasks have to be integrated into workflow models, e.g.,
loading the required data, preparing it for further processing,
selecting a suited subset of the data, or visualizing the results
after the quantum computation. Thereby, solutions from the
research area of scientific workflows can be utilized to model
and execute these tasks [30], [49]. In future work, we plan to
integrate these solutions into our approach to ease the usage
of workflows executing quantum circuits in these areas.

VIII. RELATED WORK

Recently, Zapata announced Orquestra [50], a software plat-
form for executing so-called quantum-enabled workflows.
Orquestra provides a YAML-based workflow language to
define workflows comprising tasks that are executed on
classical hardware, as well as on quantum computers from
different providers, such as IBM, Rigetti, and Atos. The
tasks that can be modeled in an Orquestra workflow are
defined and implemented by so-called resources. However,
there exists no resource for each lifecycle phase. Instead, the

user has to implement the required phases by himself. Addi-
tionally, there currently exists neither a graphical notation for
the different resources nor a graphical modeling tool. Thus,
the development of workflows is complex and requires a
lot of technical expertise. In contrast, our approach provides
a graphical notation and builds upon modeling constructs
that are well-known to workflow modelers, reducing the
modeling complexity. Furthermore, our approach enables
benefiting from the variety of features provided by state-of-
the-art workflow engines, such as transactional processing,
robustness, scalability, or support for human tasks.

Various tools support one or multiple phases of the
quantum software lifecycle, and thus, can be used when
creating QRMs. McCaskey et al. [36] present the eXtreme-
scale ACCelerator (XACC), a hardware-agnostic execution
framework for quantum computing. Thereby, they specify a
compilation and execution process that enables conducting
quantum circuits on various quantum computers independent
of the used language. Further, they integrate the readout-
error mitigation phase into this process. Thus, when using
XACC, this phase does not need to be modeled explicitly.
However, details about the mitigation, such as the used
unfolding method, are hidden in the request to XACC then.
Häner et al. [51] propose a methodology to optimize quan-
tum circuits, which can be applied before their execution
to reduce the influence of errors. Salm et al. [35] outline
an approach to select a suited quantum computer for the
execution of a quantum algorithm on a certain input and
take into account, e.g., the number of available and required
qubits. Thus, the approach can be used if the workflow
modeler does not explicitly define a quantum computer.

Different research works propose domain-specific exten-
sions for workflow languages and show a mapping to native
modeling constructs of the used workflow language. For
example, Falazi et al. [52] introduce a modeling extension
to integrate blockchain interactions into workflow models
and provide a transformation of their modeling constructs to
native BPMN workflow fragments. Breitenbücher et al. [33]
introduce an extension to model situations in workflows and
present a mapping to native BPEL modeling constructs.

Several works utilize reusable workflow fragments to
assemble an overall workflow. Eberle et al. [32] intro-
duce a workflow fragment repository and a composer to
create new workflows from existing workflow fragments.
Sethi et al. [53] analyze the potential of reusable workflow
fragments in different domains. Bucchiarone et al. [54]
present an approach to dynamically adapt workflow models
by replacing abstract activities with fine-grained workflow
fragments based on defined goals. Képes et al. [55] describe
an approach to dynamically select a workflow fragment for
a required operation depending on the current situation.
Schumm et al. [56] introduce the Fragmento repository
to store workflow fragments providing functions such as
validation and query support to find a workflow fragment

for a certain purpose. Garijo et al. [57] present a concept to
detect common workflow fragments in scientific workflows
based on collected provenance data and artificial intelli-
gence. Wen et al. [58] describe a mechanism to discover
suited workflow fragments depending on user requirements.

IX. CONCLUSION AND FUTURE WORK

Quantum computing promises enormous speed-ups in solv-
ing many problems compared to classical algorithms. How-
ever, different complex pre- and post-processing tasks have
to be performed when executing a quantum circuit, which
require immense mathematical and technical knowledge.
Therefore, the integration of classical applications and quan-
tum circuits is a difficult challenge, as the classical appli-
cation has to perform all these tasks to interact with the
quantum circuit. In this work, we introduced the Quan-
tum Modeling Extension (QUANTME) to model quantum
circuit invocations in workflows to ease their orchestration
with classical applications and showed how to ensure the
executability of QUANTME workflow models on different
workflow engines. We validated the technical feasibility of
our approach by a prototypical implementation and a case
study modeling three different quantum algorithms as work-
flow models using Quantum4BPMN and provided a first
evaluation of the achieved reuse and degree of simplification.

In future work, we plan to develop a unified API for dif-
ferent quantum cloud offerings to enable executing quantum
circuits on various offerings without requiring to implement
special replacement fragments. Additionally, we will further
evaluate our approach by implementing additional quantum
workflows using our modeling extension and develop corre-
sponding QRMs. Thereby, we focus especially on variational
algorithms and analyze if extensions to QUANTME are
needed to support the modeler in defining their special
structure and tasks, such as evaluating cost functions or op-
timizing parameterized gates. Finally, we plan to incorporate
solutions from the research area of scientific workflow into
our approach, e.g., to handle large amounts of data.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG) for financial support of the project
within the Cluster of Excellence in Simulation Tech-
nology (EXC 2075 – 390740016) at the University of
Stuttgart. This work was partially funded by the BMWi
project PlanQK (01MK20005N) and by the DFG project
DiStOPT (252975529).

REFERENCES

[1] J. Preskill, “Quantum Computing in the NISQ era and be-
yond,” Quantum, vol. 2, p. 79, 2018.

[2] P. W. Shor, “Polynomial-Time Algorithms for Prime Factor-
ization and Discrete Logarithms on a Quantum Computer,”
SIAM Journal on Computing, vol. 26, no. 5, p. 1484–1509,
1997.

[3] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends et al., “Quantum supremacy using a pro-
grammable superconducting processor,” Nature, vol. 574, no.
7779, pp. 505–510, 2019.

[4] M. A. Nielsen and I. Chuang, “Quantum Computation and
Quantum Information,” 2002.

[5] E. G. Rieffel and W. H. Polak, Quantum Computing: A Gentle
Introduction. MIT Press, 2011.

[6] L. K. Grover, “A fast quantum mechanical algorithm for
database search,” in Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, 1996, pp. 212–219.

[7] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Al-
gorithm for Linear Systems of Equations,” Physical review
letters, vol. 103, no. 15, p. 150502, 2009.

[8] R. LaRose, “Overview and Comparison of Gate Level Quan-
tum Software Platforms,” Quantum, vol. 3, p. 130, 2019.

[9] B. Weder, J. Barzen, F. Leymann, M. Salm, and D. Vietz,
“The Quantum Software Lifecycle,” in Proceedings of the
1st ACM SIGSOFT International Workshop on Architectures
and Paradigms for Engineering Quantum Software (APEQS).
ACM, 2020.

[10] National Academies of Sciences, Engineering, and Medicine,
Quantum Computing: Progress and Prospects. The National
Academies Press, 2019.

[11] F. Leymann and J. Barzen, “The bitter truth about gate-based
quantum algorithms in the nisq era,” Quantum Science and
Technology, vol. 5, no. 4, p. 044007, 2020.

[12] K. Mitarai, M. Kitagawa, and K. Fujii, “Quantum analog-
digital conversion,” Physical Review A, vol. 99, no. 1, p.
012301, 2019.

[13] S. S. Tannu and M. K. Qureshi, “Not all qubits are created
equal: A case for variability-aware policies for nisq-era quan-
tum computers,” in Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 987–999.

[14] C. A. Ellis, “Workflow Technology,” Computer Supported
Cooperative Work, Trends in Software Series, vol. 7, pp. 29–
54, 1999.

[15] F. Leymann and D. Roller, Production Workflow: Concepts
and Techniques. Prentice Hall PTR, 1999.

[16] OMG, Business Process Model and Notation (BPMN) Version
2.0, Object Management Group, 2011.

[17] F. Leymann, J. Barzen, M. Falkenthal, D. Vietz, B. Weder,
and K. Wild, “Quantum in the Cloud: Application Potentials
and Research Opportunities,” in Proceedings of the 10th

International Conference on Cloud Computing and Services
Science (CLOSER). SciTePress, 2020, pp. 9–24.

[18] D. Deutsch and R. Jozsa, “Rapid solution of problems by
quantum computation,” Proceedings of the Royal Society of
London. Series A: Mathematical and Physical Sciences, vol.
439, no. 1907, pp. 553–558, 1992.

[19] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Ap-
proximate Optimization Algorithm,” arXiv:1411.4028, 2014.

[20] S. Endo, S. C. Benjamin, and Y. Li, “Practical Quantum Error
Mitigation for Near-Future Applications,” Physical Review X,
vol. 8, no. 3, p. 031027, 2018.

[21] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd,
and O. Regev, “Adiabatic Quantum Computation Is Equiv-
alent to Standard Quantum Computation,” SIAM review,
vol. 50, no. 4, pp. 755–787, 2008.

[22] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and
M. Van den Nest, “Measurement-based quantum computa-
tion,” Nature Physics, vol. 5, no. 1, pp. 19–26, 2009.

[23] J. Gruska, Quantum Computing. Citeseer, 1999, vol. 2005.

[24] M. Mosca, “Quantum Algorithms,” arXiv:0808.0369, 2008.
[25] F. Leymann, “Towards a Pattern Language for Quantum Algo-

rithms,” in Quantum Technology and Optimization Problems.
Springer International Publishing, 2019, pp. 218–230.

[26] F. B. Maciejewski, Z. Zimborás, and M. Oszmaniec, “Mitiga-
tion of readout noise in near-term quantum devices by classi-
cal post-processing based on detector tomography,” Quantum,
vol. 4, p. 257, 2020.

[27] OASIS, Web Services Business Process Execution Language
(WS-BPEL) Version 2.0, Organization for the Advancement
of Structured Information Standards, 2007.

[28] F. Leymann, D. Roller, and M.-T. Schmidt, “Web services and
business process management,” IBM systems Journal, vol. 41,
no. 2, pp. 198–211, 2002.

[29] J. Eder and W. Liebhart, “Workflow Recovery,” in Proceed-
ings First IFCIS International Conference on Cooperative
Information Systems. IEEE, 1996, pp. 124–134.

[30] K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, and
M. Reiter, “Conventional Workflow Technology for Scientific
Simulation,” in Guide to e-Science. Springer, 2011, pp. 323–
352.

[31] B. Weder, U. Breitenbücher, K. Képes, F. Leymann, and
M. Zimmermann, “Deployable Self-contained Workflow
Models,” in Proceedings of the 8th European Conference on
Service-Oriented and Cloud Computing (ESOCC). Springer,
2020, pp. 85–96.

[32] H. Eberle, T. Unger, and F. Leymann, “Process Fragments,” in
OTM Confederated International Conferences” On the Move
to Meaningful Internet Systems”. Springer, 2009, pp. 398–
405.

[33] U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp, F. Leymann,
and M. Wieland, “A Situation-Aware Workflow Modelling
Extension,” in Proceedings of the 17th International Confer-
ence on Information Integration and Web-based Applications
& Services (iiWAS), 2015, pp. 1–7.

[34] Camunda. (2020) BPMN Workflow Engine. [Online].
Available: https://camunda.com/products/bpmn-engine

[35] M. Salm, J. Barzen, U. Breitenbücher, F. Leymann, B. Weder,
and K. Wild, “The NISQ Analyzer: Automating the Selection
of Quantum Computers for Quantum Algorithms,” CCIS
Communications in Computer and Information Science, 2020.

[36] A. J. McCaskey, E. F. Dumitrescu, D. I. Liakh, and T. S. Hum-
ble, “Hybrid Programming for Near-term Quantum Comput-
ing Systems,” in 2018 IEEE International Conference on
Rebooting Computing (ICRC). IEEE, 2018, pp. 1–12.

[37] B. Malaescu, “An iterative, dynamically stabilized method of
data unfolding,” arXiv:0907.3791, 2009.

[38] L. Harzenetter, U. Breitenbücher, M. Falkenthal, J. Guth,
C. Krieger, and F. Leymann, “Pattern-based deployment
models and their automatic execution,” in 11th IEEE/ACM
International Conference on Utility and Cloud Computing
(UCC). IEEE Computer Society, 2018, pp. 41–52.

[39] D. R. Simon, “On the Power of Quantum Computation,”
SIAM journal on computing, vol. 26, no. 5, pp. 1474–1483,
1997.

[40] E. Bernstein and U. Vazirani, “Quantum Complexity Theory,”
SIAM Journal on computing, vol. 26, no. 5, pp. 1411–1473,
1997.

[41] J. Du, M. Shi, X. Zhou, Y. Fan, B. Ye, R. Han, and
J. Wu, “Implementation of a quantum algorithm to solve the
Bernstein-Vazirani parity problem without entanglement on
an ensemble quantum computer,” Physical Review A, vol. 64,
no. 4, p. 042306, 2001.

[42] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quan-
tum Amplitude Amplification and Estimation,” Contemporary
Mathematics, vol. 305, pp. 53–74, 2002.

[43] J. R. McClean, J. Romero, R. Babbush et al., “The theory of
variational hybrid quantum-classical algorithms,” New Jour-
nal of Physics, vol. 18, no. 2, p. 023023, 2016.

[44] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. Gambetta, “Hardware-efficient Variational
Quantum Eigensolver for Small Molecules and Quantum
Magnets,” Nature, vol. 549, no. 7671, pp. 242–246, 2017.

[45] S. Mazanek and M. Hanus, “Constructing a Bidirectional
Transformation between BPMN and BPEL with a Functional
Logic Programming Language,” Journal of Visual Languages
& Computing, vol. 22, no. 1, pp. 66–89, 2011.

[46] C. Ouyang, M. Dumas, A. H. Ter Hofstede, and W. M.
Van der Aalst, “From BPMN Process Models to BPEL Web
Services,” in 2006 IEEE International Conference on Web
Services (ICWS). IEEE, 2006, pp. 285–292.

[47] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, “Quantum machine learning,” Nature, vol. 549,
no. 7671, pp. 195–202, 2017.

[48] V. Dunjko and H. J. Briegel, “Machine learning & artificial
intelligence in the quantum domain: a review of recent
progress,” Reports on Progress in Physics, vol. 81, no. 7,
p. 074001, 2018.

[49] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones et al., “Scientific workflow management and the
Kepler system,” Concurrency and computation: Practice and
experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[50] Zapata. (2020) Orquestra. [Online]. Available: https://www.
zapatacomputing.com/orquestra

[51] T. Häner, D. S. Steiger, K. Svore, and M. Troyer, “A software
methodology for compiling quantum programs,” Quantum
Science and Technology, vol. 3, no. 2, p. 020501, 2018.

[52] G. Falazi, M. Hahn, U. Breitenbücher, and F. Leymann,
“Modeling and execution of blockchain-aware business pro-
cesses,” SICS Software-Intensive Cyber-Physical Systems,
vol. 34, no. 2-3, pp. 105–116, 2019.

[53] R. J. Sethi, H. Jo, and Y. Gil, “Re-Using Workflow Fragments
Across Multiple Data Domains,” in 2012 SC Companion:
High Performance Computing, Networking Storage and Anal-
ysis. IEEE, 2012, pp. 90–99.

[54] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik,
“Dynamic Adaptation of Fragment-based and Context-aware
Business Processes,” in 2012 IEEE 19th International Con-
ference on Web Services. IEEE, 2012, pp. 33–41.

[55] K. Képes, U. Breitenbücher, S. G. Sáez, J. Guth, F. Leymann,
and M. Wieland, “Situation-Aware Execution and Dynamic
Adaptation of Traditional Workflow Models,” in Proceedings
of the 5th European Conference on Service-Oriented and
Cloud Computing (ESOCC). Springer, 2016, pp. 69–83.

[56] D. Schumm, D. Karastoyanova, F. Leymann, and S. Strauch,
“Fragmento: Advanced Process Fragment Library,” in Pro-
ceedings of the 19th International Conference on Information
Systems Development. Springer, 2010.

[57] D. Garijo, O. Corcho, and Y. Gil, “Detecting common sci-
entific workflow fragments using templates and execution
provenance,” in Proceedings of the seventh international
conference on Knowledge capture, 2013, pp. 33–40.

[58] J. Wen, Z. Zhou, F. Lei, and J. Zhang, “Basic and personalized
pattern-based workflow fragments discovery,” Personal and
Ubiquitous Computing, pp. 1–21, 2019.

All links were last followed on October 1, 2020.

https://camunda.com/products/bpmn-engine
https://www.zapatacomputing.com/orquestra
https://www.zapatacomputing.com/orquestra

