
University of Stuttgart, Institute of Architecture of Application Systems, Germany,
[firstname.lastname]@iaas.uni-stuttgart.de

Analysis and Rewrite of Quantum Workflows:
Improving the Execution of
Hybrid Quantum Algorithms

These publication and contributions were presented at CLOSER 2022

The publication is available at:
https://www.scitepress.org/PublicationsDetail.aspx?ID=8gCNIWqSke0=

© 2022 SciTePress. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the SciTePress.

@inproceedings{Weder2022_QuantumWorkflowRewrite,

Author = {Weder, Benjamin and Barzen, Johanna and Beisel, Martin and

Leymann, Frank},

Title = {{Analysis and Rewrite of Quantum Workflows: Improving the

Execution of Hybrid Quantum Algorithms}},

Booktitle = {Proceedings of the 12th International

Conference on Cloud Computing and Services Science

(CLOSER 2022)},

Publisher = {SciTePress},

Year = 2022,

Month = apr,

Pages = {38-50},

Doi = {10.5220/0011035100003200}

}

Benjamin Weder, Johanna Barzen, Martin Beisel, and Frank Leymann

:

Institute of Architecture of Application Systems

https://www.scitepress.org/PublicationsDetail.aspx?ID=8gCNIWqSke0=

Analysis and Rewrite of Quantum Workflows:
Improving the Execution of Hybrid Quantum Algorithms

Benjamin Weder a, Johanna Barzen b, Martin Beisel c, and Frank Leymann d

Institute of Architecture of Application Systems, University of Stuttgart, Germany

[firstname.lastname]@iaas.uni-stuttgart.de

Keywords: Quantum Computing, Hybrid Algorithms, Quantum Workflows, Workflow Rewrite, Hybrid Runtimes

Abstract: With the rapid evolution of quantum computers and the emergence of different quantum cloud offerings, use

cases from various application areas, such as chemistry or physics, can now be implemented and executed on

real quantum computers. Thereby, the applications are typically hybrid, i.e., combine quantum and classical

programs. Workflows enable the orchestration of these programs and provide advantages, such as robustness or

reproducibility. However, different quantum algorithms require executing the quantum and classical programs

in a loop with many iterations, leading to an inefficient orchestration through the workflow. For the efficient

execution of such algorithms, hybrid runtimes are offered, combining the quantum and classical programs

in a single hybrid program, optimizing the execution. However, this leads to a conceptional gap between

the modeling benefits of workflow technologies, e.g., modularization, reuse, and understandability, and the

efficiency improvements when using hybrid runtimes. To overcome this issue, we present a method to model

all tasks explicitly in the workflow model and analyze the workflow to detect loops that can benefit from

hybrid runtimes. Furthermore, corresponding hybrid programs are automatically generated, and the workflow

is rewritten to use them. We validate the practical feasibility of our approach by a prototypical implementation.

1 INTRODUCTION

Quantum computers are made publicly available via

the cloud by various providers, such as IBM or

Rigetti (LaRose, 2019; Leymann et al., 2020). Thus,

use cases from different application areas, e.g., com-

puter science, physics, or chemistry, can be im-

plemented and evaluated on real quantum comput-

ers (Weder et al., 2022). Thereby, quantum comput-

ing is expected to provide different benefits, such as

speed-ups and higher accuracy for certain problems,

e.g., for machine learning algorithms, or lower energy

consumption compared to using classical infrastruc-

tures (Nielsen and Chuang, 2010; Barzen, 2021).

Today‘s quantum applications are typically hy-

brid, i.e., consist of quantum programs executed on a

quantum computer and classical programs performing

pre- and post-processing tasks using classical com-

puters (McCaskey et al., 2018; Leymann and Barzen,

2020). Thereby, we focus on the gate-based quantum

computing model, where quantum programs are rep-

a https://orcid.org/0000-0002-6761-6243
b https://orcid.org/0000-0001-8397-7973
c https://orcid.org/0000-0003-2617-751X
d https://orcid.org/0000-0002-9123-259X

resented by so-called quantum circuits (Nielsen and

Chuang, 2010). The classical programs can, e.g., gen-

erate state preparation circuits based on the input data

as a pre-processing step (LaRose and Coyle, 2020).

These state preparation circuits are then prepended to

the quantum circuit to be executed to initialize the

register of the quantum computer with the required

state (Leymann and Barzen, 2020). Another example

of classical post-processing is mitigating errors oc-

curring due to the noise of current quantum comput-

ers (Maciejewski et al., 2020; Weder et al., 2021c).

Thus, quantum applications require orchestrat-

ing a set of quantum and classical programs, which

are often based on different programming languages,

data formats, or invocation mechanisms (Leymann

and Barzen, 2021; Weder et al., 2022). Workflow

technologies are an orchestration approach that has

been applied to integrate heterogeneous programs and

services in various application areas, such as busi-

ness process management or e-science (Leymann and

Roller, 2000b; Liu et al., 2015). Thereby, workflows

provide different benefits, e.g., scalability, robustness,

or transactional processing (Leymann, 1995; Eder and

Liebhart, 1996). Hence, workflows are also a promis-

ing means to orchestrate the programs comprising a

hybrid quantum application (Weder et al., 2020b).

However, various quantum algorithms require the

interleaved execution of quantum and classical pro-

grams until a certain condition is met (McClean et al.,

2016). With a high number of iterations, the orches-

tration by the workflow is getting inefficient, as it has

to pass the control and data between the programs in

each iteration (Leymann and Barzen, 2021). Efficient

execution of these algorithms can be ensured by hy-

brid runtimes (Vietz et al., 2021) ± an emerging type

of runtime enabling the upload of quantum and clas-

sical programs together as so-called hybrid programs.

In this paper, (i) we introduce a method to enable

the modeling of all tasks implementing hybrid quan-

tum algorithms in the workflow model while increas-

ing the efficiency through hybrid runtimes. Hence, in-

stead of implementing a single hybrid program com-

prising all tasks and invoking it by the workflow, the

modularity is retained, increasing the reuse and un-

derstandability. However, to benefit from the advan-

tages of hybrid runtimes, (ii) we automatically ana-

lyze the workflow model to find suitable optimization

candidates, generate corresponding hybrid programs,

and rewrite the workflow to invoke them. To prove the

practical feasibility of our method, (iii) we present a

prototypical implementation based on the MODULO

framework (Weder et al., 2021a) and Qiskit Runtime,

a hybrid runtime provided by IBM (IBM, 2021c).

Finally, (iv) we showcase the analysis and rewrite

method based on an exemplary quantum workflow.

The remainder of the paper is structured as fol-

lows: In Section 2, fundamentals and the problem

statement are described. Then, Section 3 presents the

method to model quantum workflows independent of

a certain runtime, as well as their automated analysis

and rewrite to improve the execution of hybrid algo-

rithms. In Section 4, the prototype implementing the

presented method is introduced. Subsequently, Sec-

tion 5 validates the method with a case study, and Sec-

tion 6 evaluates its performance. Section 7 discusses

possible extensions, as well as consequences regard-

ing the monitoring and analysis of quantum work-

flows. Finally, the related work is discussed in Sec-

tion 8, and Section 9 concludes the paper.

2 FUNDAMENTALS & PROBLEM

STATEMENT

In the following, we introduce fundamentals about

hybrid quantum algorithms and hybrid runtimes. Fur-

thermore, the need for workflow technology to or-

chestrate the different software artifacts implement-

ing a quantum application is motivated. Finally, we

present the problem statement of this work.

2.1 Hybrid Algorithms & Runtimes

Today‘s quantum computers provide a limited num-

ber of qubits and are affected by noise from dif-

ferent sources, restricting the number of operations

that can be successfully executed (Leymann and

Barzen, 2020). Therefore, they are often referred

to as Noisy Intermediate-Scale Quantum (NISQ) de-

vices (Preskill, 2018). Due to these limitations, dif-

ferent quantum algorithms, such as the HHL algo-

rithm (Harrow et al., 2009) for solving linear systems

of equations, can currently not be executed on practi-

cally useful problems (Leymann and Barzen, 2020).

To overcome this issue and to already benefit from

quantum computing during the NISQ era, so-called

hybrid algorithms are used (Leymann and Barzen,

2021; Weder et al., 2022). Hybrid algorithms split the

computational tasks and distribute them over quantum

and classical computers (Weigold et al., 2021). The

goal of this splitting is to derive shallow quantum

programs using only a small number of qubits and

operations (Cerezo et al., 2021). Thus, they can be

successfully executed on today‘s quantum comput-

ers, with their short decoherence times and high er-

ror rates (Salm et al., 2020; Preskill, 2018). Dif-

ferent hybrid algorithms also require executing the

quantum and classical programs in a loop (Mc-

Clean et al., 2016). Examples relying on this ap-

proach are the quantum approximate optimization al-

gorithm (QAOA) (Farhi et al., 2014), which can be

used for solving various optimization problems, or

the variational quantum eigensolver (VQE) (Kandala

et al., 2017) to determine eigenvalues of a matrix.

Queue-based access to quantum computers is un-

suitable when executing hybrid algorithms compris-

ing a loop of quantum and classical processing (Ley-

mann and Barzen, 2021; Karalekas et al., 2020). This

results in submitting a request to the queue in each it-

eration, increasing the latency of the hybrid algorithm

significantly. Instead, access to the quantum com-

puter has to be reserved for the whole duration of the

loop, which different quantum hardware providers en-

able by booking a corresponding time slice (LaRose,

2019). However, the data must still be transmitted be-

tween the quantum and the classical programs, e.g.,

executed on a user device or some cloud offering, in

each iteration, increasing the latency (IBM, 2021a).

To avoid this, new offerings are emerging, such as the

Qiskit Runtime (IBM, 2021c) or Amazon Braket Hy-

brid Jobs (AWS, 2021), to which we refer to as hybrid

runtimes. Hybrid runtimes allow uploading the quan-

tum and classical programs of a hybrid algorithm to-

gether for execution. Then, the classical programs are

provisioned close to the used quantum computer, and

the communication between them is optimized.

Initialize
Algorithm

Execute
Ansatz

Evaluate
Costs

Optimize
Parameters

Converged?

Yes

No

Legend: Message
Start Event

Message
End Event

Sequence
Flow

Service
Task

Quantum Circuit
Execution Task

Exclusive
Gateway

Figure 1: Quantum workflow executing a variational quan-
tum algorithm (adapted from (Vietz et al., 2021))

2.2 Quantum Workflows & QuantME

The different programs implementing a hybrid algo-

rithm have to be orchestrated and required data must

be passed between them (Weder et al., 2021a). Fur-

ther, quantum applications may comprise multiple hy-

brid algorithms and additional classical programs in-

dependent of a quantum algorithm, e.g., loading data

from a database or interacting with the user (Weder

et al., 2022). An example can be found in Ley-

mann and Barzen (2021). By utilizing workflow tech-

nologies to orchestrate the programs, quantum ap-

plications can benefit from their advantages, such

as robustness, scalability, or the possibility to inter-

rupt the execution (Ellis, 1999; Leymann and Roller,

2000b). Thereby, the collection of required activities,

their partial order, and the data flow between them is

specified in a workflow model. This workflow model

can be uploaded to a workflow engine for execution.

However, the modeling of quantum workflows is

complex and requires quantum-specific expertise, as

well as knowledge about workflow technologies (Vi-

etz et al., 2021; Weder et al., 2022). Furthermore,

existing workflow languages, such as BPMN (OMG,

2011) or BPEL (OASIS, 2007), do not incorporate ex-

plicit modeling constructs for the different frequently

occurring pre-processing, quantum program execu-

tion, and post-processing tasks with their specific

characteristics (Weder et al., 2021a). To ease the mod-

eling of these tasks and to increase the reuse of their

implementations, we introduced the quantum mod-

eling extension (QuantME) (Weder et al., 2020b),

which can be applied to various imperative workflow

languages. QuantME incorporates new modeling con-

structs for different tasks, e.g., the data preparation

task, generating a state preparation circuit depending

on the input data (LaRose and Coyle, 2020), or the

quantum circuit execution task, executing a quantum

circuit. All QuantME modeling constructs define a set

of configuration properties, which can be used to cus-

tomize them, e.g., by specifying which encoding to

use to generate the state preparation circuit.

In Figure 1, an exemplary quantum workflow im-

plementing the general structure of a so-called vari-

ational quantum algorithm (VQA), such as VQE, is

shown (Cerezo et al., 2021). VQAs are special kinds

of hybrid algorithms relying on a parameterized quan-

tum circuit, called ansatz, for which the parameters

are optimized in each iteration of quantum and classi-

cal processing (Sim et al., 2019; Weigold et al., 2021).

The quantum workflow starts when a message with

the input data is received. Then, it initializes the algo-

rithm by loading the ansatz and calculating the initial

parameters. Afterwards, the hybrid loop is entered,

executing the ansatz on a quantum computer and eval-

uating the cost function encoding the solutions of the

problem to solve with the retrieved results. If the costs

converge to an optimum or another termination con-

dition is met, the workflow returns the result to the

user. Otherwise, the next iteration is entered by opti-

mizing the parameters based on the previous results.

2.3 Problem Statement

As described in the previous section, quantum appli-

cations can be modeled using workflows to benefit

from their advantages. In addition to the advantages

already discussed, their graphical notation also eases

the understanding of implemented hybrid algorithms,

even for non-quantum experts. Further, they increase

the modularization by splitting the functionality into

independent services. Hence, the implementations of

the tasks can easily be exchanged, e.g., to test another

optimizer in the example from Figure 1. However,

the orchestration of loops consisting of quantum and

classical processing by the workflow is inefficient. In-

stead, the workflow should be automatically analyzed

and rewritten to use hybrid runtimes for the execution

of such hybrid loops. Thus, our main research ques-

tion (RQ) for this work can be formulated as follows:

RQ: ªHow can workflows implementing hybrid

algorithms be modeled independently of the run-

time to use and automatically be analyzed and

rewritten to benefit from hybrid runtimes?º

We are addressing the RQ by splitting it into the

following questions tackling the two main challenges:

Sub-RQ 1: ªHow can workflows be analyzed to

detect hybrid loops, which can be executed more

efficiently using hybrid runtimes?º

Sub-RQ 2: ªHow can programs for hybrid run-

times automatically be generated based on such

loops, and workflows be rewritten to use them?º

Workflow

Modeling

Candidate

Detection

Candidate

Filtering

Hybrid

Program

Generation

I II III IV V VI

Workflow

Rewrite

Deployment

& Workflow

Execution

Cloud

Hybrid

Runtime

…Extracted

Programs

Hybrid

Program

Figure 2: Overview of the method to analyze and rewrite quantum workflows to benefit from hybrid runtimes

3 QUANTUM WORKFLOW

ANALYSIS AND REWRITE

In this section, we present our method to analyze and

rewrite quantum workflows to use hybrid runtimes for

the execution of hybrid loops. The method consists of

six steps, which are discussed in the following sub-

sections. Figure 2 gives an overview of the method

and the included steps. Thereby, steps two and three

address Sub-RQ 1 and steps four and five Sub-RQ 2.

3.1 Workflow Modeling

In the first step, the quantum workflow is mod-

eled, comprising all required quantum and classical

tasks, their partial order, and the data flow between

them (Leymann and Roller, 2000b; Dumas et al.,

2013). In addition to the native modeling constructs

of the utilized workflow language, QuantME model-

ing constructs are used to define the quantum-specific

tasks. Although QuantME can be applied to differ-

ent imperative workflow languages (see Section 2.2),

we use the BPMN (OMG, 2011) concepts for all fur-

ther considerations, as it is widely used and provides

a well-known graphical notation. The result of the

workflow modeling step is a workflow model orches-

trating the tasks of one or multiple hybrid algorithms,

as well as additional classical tasks if needed.

3.2 Candidate Detection

Next, the quantum workflow is automatically an-

alyzed to detect workflow fragments orchestrating

the interleaved execution of quantum and classical

processing, which are candidates for an optimized

execution using a hybrid runtime. These workflow

fragments must satisfy three conditions: (i) They

must contain one or more quantum circuit execution

tasks, the QuantME modeling construct to execute

quantum circuits on a quantum computer (Weder

et al., 2020b). Otherwise, no quantum computers

are needed, and thus, also a hybrid runtime is not

useful. (ii) Furthermore, the workflow fragment must

comprise classical processing, e.g., modeled using

a script or service task in BPMN. If the workflow

fragment only contains quantum processing and no

classical programs, the quantum circuits can also

be executed using batch processing, and no hybrid

runtime is needed. Another optimization for multiple

quantum circuit execution tasks can be to concatenate

the different quantum circuits into one circuit and

execute only this circuit. However, the quantum

circuit concatenation leads to an increased depth of

the resulting circuit, which can be unsuitable for

today’s quantum computers (Salm et al., 2020). Thus,

a thorough analysis of the circuit, as well as the avail-

able quantum computers is required, which we plan

to incorporate into the analysis and rewrite method

as part of our future work. (iii) Finally, the quantum

and classical processing must be executed interleaved

multiple times to benefit from hybrid runtimes. With-

out the interleaved execution, access to a quantum

computer using a queue or reserving a time slice is

usually sufficient (Vietz et al., 2021). This can either

be modeled by several quantum and classical tasks or

a loop in the workflow model. As the efficiency gain

of hybrid runtimes usually increases with the number

of iterations, we restrict the candidates to loops and

leave other scenarios as future work. Such loops are

typically represented by two corresponding splitting

and merging gateways in BPMN, but they can also

be modeled, e.g., as a single gateway or by directly

connecting activities using conditional sequence flow.

3.3 Candidate Filtering

In this step, the candidates are filtered based on their

properties and the characteristics of the hybrid run-

times, as well as their supported hybrid programs.

This means the filtering is applied for each available

hybrid runtime independently, and different restric-

tions apply. Thus, a corresponding system support-

ing the analysis and rewrite method has to be plugin-

based and extensible for new hybrid runtime offer-

ings (see Section 4.1). However, the restrictions can

be grouped into the following categories, which must

be analyzed when adding a new hybrid runtime:

(1) Programming language: The set of supported

programming languages for the hybrid programs

is typically restricted. This also limits the allowed

languages of the quantum and classical programs

implementing the tasks within the candidates, as

they must be merged into the hybrid program. For

example, only Python may be allowed for classi-

cal and OpenQASM for quantum programs.

(2) Activity and task types: Not all activity and task

types allowed by the used workflow language can

be represented in a hybrid program. For exam-

ple, human tasks are not suitable, as they often

result in long delays contradicting the idea of hy-

brid runtimes to have fast iterations between clas-

sical and quantum processing. Furthermore, trans-

actions can not be properly handled in hybrid run-

times and are not admitted in optimization can-

didates. For sub-processes, the candidate filter-

ing has to be applied recursively for all contained

modeling constructs. Finally, modeling constructs

such as the BPMN call activity invoking other

globally defined tasks or workflows can also be

handled recursively if their required definitions

are accessible for the analysis and rewrite method.

(3) Events: Similar to task types, not each supported

event can be mapped to a hybrid program. While

some of the events, such as catching message or

signal events, also end up in impractical delays,

other events result in technical difficulties when

generating the hybrid programs. For example, a

throwing compensation event can be mapped to an

API call from the hybrid program to the workflow

engine executing the workflow to trigger compen-

sation. However, this must then be supported by

the hybrid runtime and the workflow engine.

(4) Gateways: Some of the gateways used in op-

timization candidates might not be supported by

all available hybrid runtimes. For example, be-

cause they are event-based or have global seman-

tics, such as the inclusive gateway in BPMN.

(5) Quantum computer provider: Finally, the

quantum circuit execution task within the candi-

date allows specifying a certain provider or even

a specific quantum computer to use for the exe-

cution of the quantum circuit. Thus, only a hybrid

runtime supporting this provider or quantum com-

puter can be used then to execute the hybrid loop.

In addition to this runtime-specific filtering, a

general requirement for the rewrite is the availabil-

ity of the source code for the quantum and classi-

cal programs implementing the tasks within the can-

didates. Otherwise, the generation of a correspond-

ing hybrid program is not possible. This can, e.g.,

be achieved for script tasks by packaging the scripts

with the workflow model or for service tasks by at-

taching deployment models with the required code

to them (Weder et al., 2020a). However, it is usually

not possible for services from external providers, e.g.,

available through a service registry (De, 2017).

Finally, if multiple hybrid runtimes are suitable for

a candidate, the user can be asked for a selection, or

it is automatically selected based on non-functional

requirements, such as costs or trust in the provider.

3.4 Hybrid Program Generation

After determining a suitable hybrid runtime for a can-

didate, the hybrid program implementing the func-

tionality of the workflow fragment is generated (Ley-

mann and Roller, 2000a). For this, the programs cor-

responding to the tasks of the workflow fragment are

extracted. Further, code snippets implementing the

functionality of the contained gateways and events are

generated. This can be achieved by providing tem-

plates for the supported gateways and events and then

instrumenting them with the variable parts, e.g., the

condition for a gateway (Orban, 2011). Next, the input

and output parameters for the hybrid program have to

be determined by analyzing the workflow. Thereby,

the input parameters of all modeling constructs are

collected and then filtered if they are the output of pre-

vious modeling constructs within the workflow frag-

ment. Similarly, the output parameters are detected

by merging the output parameters of the constructs

within the workflow fragment and filtering them if

they are not used as input for another construct out-

side the workflow fragment. Based on the determined

input and output parameters, the interface of the hy-

brid program is created. Finally, the extracted pro-

grams and generated code snippets are merged into

the hybrid program depending on the sequence flow

of the workflow fragment. Additionally, variables are

introduced and passed within the hybrid program to

reflect the data flow defined in the workflow fragment.

3.5 Workflow Rewrite

In the fifth step, the workflow is adapted to invoke the

hybrid programs generated in the previous step. For

this, a new service task is inserted into the workflow

model to kick off the execution within the hybrid run-

time through the corresponding API. Further, the in-

and outgoing sequence and data flow of the replaced

workflow fragment are redirected to the inserted ser-

vice task. In the same way, boundary events of the

tasks within the workflow fragment can be added

to the service task if, e.g., the hybrid runtime sup-

ports terminating the execution when an interrupting

boundary event is triggered. Otherwise, the rewrite

must be aborted to avoid changing the semantics.

In addition, deployment models are automatically

generated for each hybrid program. These deploy-

ment models are then attached to the service tasks

to enable a self-contained packaging of the workflow

model and all required data and code (Weder et al.,

2020a). In contrast to directly deploying the hybrid

programs, this can result in lower costs when deploy-

ing them on-demand before the workflow execution.

3.6 Deployment & Workflow Execution

In the last step, the required services for the workflow

execution that are not always running are deployed.

This includes services that are hosted on classical in-

frastructure, e.g., in the cloud, using an HPC, or a

local workstation (Weder et al., 2021a). Further, the

deployment of the generated hybrid programs to the

hybrid runtimes is performed. For hybrid programs,

the created deployment models from the previous step

are utilized. All other services can also be deployed

automatically if the required deployment models are

attached to the activities (Weder et al., 2020a). De-

pending on the kind of deployment models, differ-

ent deployment systems can be used, such as Kuber-

netes (CNCF, 2021), Terraform (HashiCorp, 2021),

or the OpenTOSCA Container (Binz et al., 2013).

After deploying the services, they are bound to the

workflow by updating the endpoint information in the

workflow model with the details about the deployed

services. Finally, the updated workflow model is up-

loaded to a workflow engine and can be instantiated.

4 PROTOTYPICAL VALIDATION

In this section, we present the system architecture

supporting the analysis and rewrite of quantum work-

flows and discuss our prototypical implementation.

4.1 System Architecture

Figure 3 presents the overall system architecture

of our framework. Thereby, the MODULO frame-

work (Weder et al., 2021a) to model, transform, and

deploy quantum workflows is extended by additional

components and services to support the analysis and

rewrite method introduced in Section 3. Existing un-

changed components are light, expanded components

are grey, and newly added components are dark.

The QuantME Transformation Framework is

a graphical BPMN modeler supporting QuantME,

which is based on the Camunda modeler (Camunda,

2021a). It comprises the plugin-based Workflow An-

alyzer, which enables candidate detection and filter-

ing. Thereby, new plugins can be added for a hybrid

runtime defining the corresponding restrictions for

the filtering (see Section 3.3). The QuantME Mod-

eler component enables the graphical modeling of the

QuantME and the native BPMN modeling constructs.

It was extended to trigger the workflow analysis and

rewrite, as well as visualization of found candidates

to enable a user selection if multiple hybrid runtimes

are suitable. All deployment-related functionality is

implemented in the Deployment Orchestrator. For

this, it uses Winery (Kopp et al., 2013), a graphical

modeling tool based on the TOSCA standard (OA-

SIS, 2013), and the OpenTOSCA Container (Binz

et al., 2013), a TOSCA-compliant runtime, to deploy

the required services. Furthermore, it automatically

binds the deployed services with the workflow and

uploads the workflow model to the Camunda BPMN

Engine (Camunda, 2021b). The Deployment Orches-

trator was extended to create the deployment models

for the generated hybrid programs by instrumenting

the connected Winery and attaching them to the new

service tasks of the rewritten workflow model.

Rewriting quantum workflows after their analy-

sis is done by the new Workflow Rewriter compo-

nent. Thus, it extracts the quantum and classical pro-

grams for each candidate and sends them to the Hy-

brid Runtime Handlers (depicted on the left) for each

hybrid runtime that was not filtered by the Workflow

Analyzer. The Hybrid Runtime Handlers are exter-

nal components that generate a hybrid program for

a certain runtime based on the given quantum and

classical programs. This is exemplarily shown by the

Qiskit Runtime Handler generating hybrid programs

for Qiskit Runtime (IBM, 2021c) by IBM. The quan-

tum and classical programs are forwarded to the In-

put Parser, which parses the programs to extract the

code that must be merged into the hybrid program.

Then, the hybrid program is created by the Hybrid

Program Generator, using the extracted code, as well

Hybrid Runtime Handlers

OpenTOSCA

Container

Winery

Camunda

BPMN

Engine

QuantME Transformation Framework

QuantME

Transformer

QuantME

Modeler

Workflow

Analyzer

QRMs
Deployment

Models

Workflow

Rewriter

Deployment

Orchestrator

QAA

Packager

Qiskit Runtime Handler

Input

Parser

Hybrid Program

Generator

Templates

…

Figure 3: System architecture of the extended MODULO framework

as the sequence and data flow passed by the Workflow

Rewriter. Further, required code snippets implement-

ing the functionality of events and gateways within

the workflow fragment are generated based on a Tem-

plates repository (see Section 3.4). The created hybrid

program is sent back to the Workflow Rewriter, adapt-

ing the workflow model to trigger its invocation.

Finally, the QuantME Transformation Framework

consists of two unchanged components: First, the

QuantME Transformer enables the transformation

of workflow models comprising QuantME model-

ing constructs to native workflow models (Weder

et al., 2020b). This retains the portability of the work-

flow models and avoids the need to extend exist-

ing workflow engines to understand the QuantME

modeling constructs. For the transformation, it uses

reusable workflow fragments implementing the re-

quired functionalities, which are stored as so-called

QuantME Replacement Models (QRMs) in a corre-

sponding repository. Second, the QAA Packager ex-

ports workflows with all needed information, e.g., de-

ployment models, code, or data, in a self-contained

quantum application archive (QAA). Therefore, only

this self-contained archive has to be transferred into

the target environment for the workflow execution.

4.2 Prototypical Implementation

The QuantME Transformation Framework is imple-

mented as a desktop application using the Electron

framework, consisting of a graphical user interface

and a Node.js backend. To prove the practical feasi-

bility of our method, we implemented the Qiskit Run-

time Handler as an exemplary Hybrid Runtime Han-

dler. However, with the emergence of hybrid runtimes

from different providers, we plan to extend the frame-

work correspondingly. Thereby, the Qiskit Runtime

Handler is realized in Python. Our prototypical im-

plementation is publicly available as an open-source

project on Github (University of Stuttgart, 2021c).

For the execution of generated hybrid programs,

the presented prototype is based on Qiskit Run-

time (IBM, 2021c), which is accessible over the quan-

tum cloud offering IBMQ. Qiskit Runtime is currently

in beta mode. Thus, some restrictions apply to its us-

age, as well as the supported hybrid programs, which

are planned to be resolved in future releases (IBM,

2021d). However, these restrictions also influence

the functionality of our prototype. For example, the

Qiskit Runtime programs are based on Python, and

the execution environment within the runtime only

provides a limited set of available dependencies. This

means, custom dependencies, e.g., including other

optimizers, can currently not be installed. Hence, also

the quantum and classical programs within the candi-

dates are not allowed to use such dependencies, and

otherwise, the rewrite must be aborted. Another ex-

ample is that the hybrid programs must only consist

of one file. Therefore, all code has to be merged into

this file, reducing the understandability. However, we

plan to resolve these issues as part of future work once

Qiskit Runtime is released with full functionality.

5 CASE STUDY

To showcase the practical feasibility of the analysis

and rewrite method, we present an exemplary quan-

tum workflow from the domain of the quantum hu-

manities (Barzen, 2021). Thereby, clustering and clas-

sification is performed on costume data. The work-

flow model is shown at the top of Figure 4.

The workflow is instantiated when a request mes-

sage with the required input is received. For the

sake of simplicity, this input contains an URL to

the already pre-processed costume data, i.e., categor-

ical data is transformed to numerical data, and the

dimension is reduced for the machine learning al-

gorithms (Barzen, 2021). However, these steps can

also be included, e.g., as service tasks in the work-

Optimization Candidate 1 Optimization Candidate 2

Legend: Message
Start Event

Message
End Event

Sequence
Flow

Service
Task

Quantum Circuit
Execution Task

Exclusive
Gateway

User
Task

Original Workflow

Rewritten Workflow

Initialize
Quantum

SVM

YesInitialize
Quantum
K-Means

Execute
Quantum
Circuits

Adapt
Quantum
Circuits

Converged?

Calculate
New

Centroids

Yes

No

Analyze
Results

Costs < 0.2?

No

Optimize
Thetas

Execute
Quantum

Circuit

Initialize
Quantum
K-Means

Execute
Quantum
K-Means

Initialize
Quantum

SVM

Train
Quantum

SVM

Analyze
Results

Figure 4: An exemplary quantum workflow comprising two hybrid loops which can be optimized using a hybrid runtime

flow. Next, the clustering starts, whereby the quan-

tum k-means algorithm (Khan et al., 2019) is orches-

trated by multiple tasks. In the first task, the quan-

tum k-means algorithm is initialized, i.e., the data is

loaded from the URL, random initial centroids are

chosen, and the quantum circuits for the algorithm are

generated. Afterwards, the algorithm enters a hybrid

loop, executing the generated quantum circuits on a

quantum computer, and calculating the new centroids

based on the measurement results in a classical ser-

vice task. If the difference between the old and new

centroids is larger than a given threshold, the quan-

tum circuits are adapted to the new centroids, and the

loop is executed again. Once the clustering converges,

a classifier is trained based on the results using a vari-

ational quantum support vector machine (Havlíček

et al., 2019). Thereby, an ansatz (see Section 2.2) and

an initial parameterization are generated. Then, the

quantum circuit is executed and the parameters theta

are optimized based on the results. Furthermore, the

cost function is evaluated with the new parameters

and if the costs are higher than the threshold 0.2, the

loop is entered again. Finally, if the costs are below

the threshold, the result can be analyzed in a user task

and is returned to the user by the message end event.

When analyzing the workflow using the QuantME

Transformation Framework, it detects two hybrid

loops as optimization candidates, which are visual-

ized as gray boxes in Figure 4. Thereby, the initializa-

tion tasks for the two algorithms are not part of the hy-

brid loop and are, therefore, also not contained in the

candidates. For both candidates, it is checked if they

can be optimized using Qiskit Runtime. As the can-

didates do not contain, e.g., invalid events (see Sec-

tion 3.4) and the source code is available as part of

deployment models attached to the activities, they are

not filtered, and the rewriting can be performed. The

resulting rewritten workflow is shown at the bottom of

Figure 4. Thereby, it comprises five tasks, which are

executed in sequence. The two service tasks to initial-

ize the hybrid algorithms, as well as the user task to

analyze the results, are unchanged. However, the two

remaining service tasks (surrounded by gray boxes)

both replace one of the optimization candidates of the

original workflow model and invoke the generated hy-

brid programs instead when they are executed.

The discussed use-case together with a detailed

description of how to set up and use the frame-

work can be found on Github (University of Stuttgart,

2021d). Further, a short demonstration video is avail-

able on YouTube (University of Stuttgart, 2021a).

6 EVALUATION

In this section, we present the results of our evalua-

tion regarding the time required to detect candidates

within different workflow models, as well as the gen-

eration of the corresponding hybrid programs and the

workflow rewrite. Further, we compare the workflow

runtime using the original workflow of our case study

and the rewritten workflow after applying our method.

6.1 Runtime of the Analysis and

Rewrite Method

To evaluate the performance of our analysis and

rewrite method, we modeled seven differently sized

workflow models. Table 1 shows the required time to

Workflow

ID
Activities # Candidates

Avg. Activities

per Candidate

Candidate

Detection

Program Generation

& Rewrite

1 8 2 2.5 0.30 s 108.00 s

2 50 2 2.5 0.44 s 108.60 s

3 50 4 2.5 0.48 s 219.67 s

4 50 6 2.5 0.75 s 323.45 s

5 50 2 5 0.40 s 314.54 s

6 50 4 5 0.59 s 631.51 s

7 50 6 5 0.73 s 929.19 s

Table 1: Runtime Evaluation of the Analysis and Rewrite Method

detect the candidates, as well as the time to gener-

ate the hybrid programs and rewrite the workflows for

the different scenarios. Thereby, the workflow models

are characterized by three attributes: (i) the number

of activities within the workflow model, (ii) the num-

ber of candidates that can be detected, and (iii) the

average activities per candidate. The number of ac-

tivities increases the search space for the candidate

detection and can influence the required time. Fur-

thermore, the number of candidates corresponds to

the number of hybrid programs that have to be gen-

erated for a workflow model. The program genera-

tion time also depends on the number of activities per

candidate, as these programs have to be analyzed and

merged into the hybrid program. Finally, the language

and length of the different programs, i.e., their lines

of code, have an impact on this step. Thus, we use

Python programs with a similar length of around 200

lines of code to implement the activities for all work-

flow models. Thereby, the target hybrid runtime for

the program generation is Qiskit Runtime.

The first workflow model in Table 1 is the case

study presented in Section 5. As shown in Figure 4,

the workflow model contains 8 activities and 2 candi-

dates. Further, one of the candidates comprises 3 and

the other 2 activities, leading to an average number

of activities per candidate of 2.5. The workflow with

ID 2 extends this workflow with additional activities,

which are not related to the execution of hybrid algo-

rithms. Thereby, the candidate detection for workflow

2 requires slightly more time than for workflow 1 be-

cause of the increased search space. In contrast, the

time for the program generation and workflow rewrite

is almost equal due to the same number and size of

the candidates. As the time for the analysis is negli-

gible compared to the program generation and rewrit-

ing, all further workflow models add additional can-

didates or adapt their size but do not change the over-

all number of activities. Thus, workflow 3 and 4 add

two candidates each but retain their average size. It

can be seen that the time for the program generation

and rewrite grows linearly with the number of candi-

dates. The reason for this is the sequential processing

of the candidates in the current prototype. However,

this can be parallelized in the future to improve the

performance when rewriting workflows with a large

number of candidates. Finally, for workflow 5 to 7,

the average number of activities per candidate is in-

creased from 2.5 to 5. Similar to workflows 2 to 4,

the time increases linearly with the number of candi-

dates. However, when doubling the average activities

per candidate, the required time grows approximately

by a factor of 2.9. The reason for this is that in addi-

tion to the doubled lines of code to analyze and merge,

the determination of the interface of the resulting hy-

brid program and the sequence and data flow between

the different program parts gets more complicated.

In general, the required initial time to analyze and

rewrite a quantum workflow is rather short compared

to the assumed runtime of large workflows, which of-

ten takes multiple hours, days, or even years (Ley-

mann and Roller, 2000b). Furthermore, the analysis

and rewrite must only be performed once, and then,

the workflow can be executed multiple times.

The presented measurements were performed on

a computer running Windows 11 64-bits with an In-

tel(R) Core(TM) i7-8565U CPU @ 1.80GHz proces-

sor and 40 GB of RAM. Thereby, the median based

on 50 measurements for each workflow is calculated.

The collected raw data of each measurement is avail-

able on Github (University of Stuttgart, 2021b).

6.2 Workflow Runtime Comparison

In the following, we compare the time to execute the

workflow presented as case study in Section 5 be-

fore and after applying our method. For this, Qiskit

Runtime was used as the hybrid runtime to execute

the hybrid programs of the rewritten workflow. Fur-

thermore, ibmq_lima was the target quantum com-

puter for both the hybrid programs and the quantum

programs of the original workflow. Thereby, we exe-

cuted both workflows ten times, leading to a median

execution time for the original workflow of 9617 s

and the rewritten workflow of 2634 s. The queue of

the quantum computer was empty during our execu-

tion. Therefore, the quantum programs of the origi-

nal workflow were not required to wait in the queue

until other jobs were completed. This means the ac-

complished speed-up is solely achieved by the opti-

mized execution and reduced latency of Qiskit Run-

time. Other jobs in the queue can further increase the

speed-up. In both cases, the workflow engine was ex-

ecuted on the computer described in the previous sub-

section. Finally, also the required classical programs

were executed on this computer. As part of our future

work, we plan to further evaluate the achieved speed-

up by executing various workflow models and utiliz-

ing different quantum computers and hybrid runtimes.

7 DISCUSSION

In the following, we discuss how the detection of suit-

able workflow fragments can be improved and how

different kinds of runtimes can be incorporated into

the presented method. Further, the problem of moni-

toring and analyzing rewritten workflows, as well as

automated quantum computer selection, are explored.

In addition to the hybrid runtimes discussed in

Section 2.1, a set of different pre-build runtimes is ex-

pected to evolve, as, e.g., announced by IBM (IBM,

2021b). These runtimes could, for example, incorpo-

rate a workflow engine or an HPC in combination

with quantum computers. Hence, they can be inte-

grated into our method by adding corresponding de-

tection and filtering rules. Further, the required soft-

ware artifacts, such as sub-workflows executed within

the runtime, must then be generated automatically.

The candidate detection and filtering are cur-

rently only based on the structure of the workflows

and the characteristics of the hybrid runtimes. How-

ever, this can be improved by attaching policies and

non-functional requirements to the workflow activ-

ities (Di Penta et al., 2006). They then have to be

taken into account for the candidate detection and fil-

tering, as well as the selection of a concrete runtime

to use. Such policies could, e.g., define that the ex-

ecution time for a certain task or sub-process is es-

pecially important or that it comprises confidential

data that is not allowed to be transferred to specific

providers. Another example would be to annotate that

a certain algorithm uses so-called warm starting (Eg-

ger et al., 2021), which requires elaborated classical

pre-processing, indicating that a runtime combining

an HPC and a quantum computer is preferable.

Due to the inherently probabilistic nature of quan-

tum computing, it is of vital importance to collect as

detailed information as possible about quantum appli-

cations and their execution (Weder et al., 2021c; Ley-

mann and Barzen, 2020). This information helps to

find the origins of errors, as well as to increase repro-

ducibility and understandability. The systematic and

automated collection and analysis of such information

are referred to as provenance (Herschel et al., 2017).

In the workflow domain, it is used to enable the mon-

itoring of running workflow instances and to store it

in the long-term in the so-called audit trail (Waters

et al., 2004). This audit trail can then be analyzed

to, e.g., improve the workflow models. However, the

rewrite of the workflow complicates the monitoring

and analysis, as the workflow model then only con-

tains one task hiding all details instead of the whole

hybrid loop. Hence, to overcome this issue, we plan

to provide provenance views in the workflow engine

as part of future work, enabling to switch between the

rewritten and original workflow model for monitoring

and analysis. This comes with additional challenges,

such as extracting intermediate data during the hybrid

program execution to support the live monitoring.

By defining a provider or even a specific quantum

computer to use in quantum circuit execution tasks,

the rewrite possibilities are restricted, as only corre-

sponding hybrid runtimes can be used then (see Sec-

tion 3.3). Thus, this should be avoided if not needed

due to non-functional requirements, e.g., the trust in

the provider. Then, the rewrite can be performed for

an arbitrary suitable hybrid runtime, and the concrete

quantum computer to use can be selected from the set

of quantum computers available through the hybrid

runtime. For this selection, tools, such as the NISQ

Analyzer (Salm et al., 2020), can be used, analyzing

the quantum circuit and quantum computer properties

and selecting a suitable one for the execution.

8 RELATED WORK

Different research works propose methods and tools

to analyze and rewrite workflow models during de-

sign time, as well as dynamically adapting them dur-

ing runtime, which are discussed in this section.

Bucchiarone et al. (2012) introduce an approach to

model abstract tasks with annotated goals, precondi-

tions, and effects and dynamically replace them with

fine-grained workflow fragments. Mundbrod et al.

(2015) present a method to rewrite workflows by in-

jecting workflow fragments depending on the context,

e.g., the available resources for a computation. Képes

et al. (2016) describe a similar approach to dynam-

ically select a workflow fragment for a required op-

eration depending on the current situation. In con-

trast, we transform from the fine-grained workflow

model to a more abstract one. Furthermore, we do

not use available workflow fragments with the corre-

sponding implementations but generate the required

programs automatically based on the rewritten work-

flow. Cohen-Boulakia et al. (2012) present a method

to rewrite scientific workflows to satisfy so-called

series-parallel structures enabling efficient processing

of provenance data. They also do not generate new

programs but only rearrange vertices in the graph rep-

resenting the scientific workflow. Furthermore, differ-

ent approaches create new workflow models or adapt

existing ones based on the audit trail using process

mining (Agrawal et al., 1998; Van Der Aalst, 2012).

AristaFlow (Rinderle-Ma and Reichert, 2010) is

a so-called adaptive workflow engine supporting the

adaptation of running workflow instances. Further-

more, it enables their migration to new versions

of the instantiated workflow model. Another exam-

ple of such an adaptive workflow engine is Agent-

Work (Müller et al., 2004). Instead of modeling all

required alternative sequence flows, it automatically

adapts the workflows in exception cases by adding

or removing activities. However, for both workflow

engines, extensions are required to support the pre-

sented workflow analysis and rewrite method. Thus,

this reduces the portability of the workflows, which

is avoided in our approach by rewriting the work-

flow before transferring it into the target environ-

ment and uploading it to a workflow engine. In pre-

vious work (Weder et al., 2021b), we introduced an

approach to automatically select a suitable quantum

computer for the execution of quantum circuits during

runtime. For this, the required services are automati-

cally deployed, and the workflow is adapted to invoke

them. In future work, we plan to integrate our analy-

sis and rewrite method with this approach. However,

conducting the method at workflow runtime requires

generating the hybrid programs, which can result in

impractical delays for time-critical use cases. There-

fore, the user can decide if the rewrite during design

or runtime is more suitable depending on the use case.

9 CONCLUSION & FUTURE

WORK

Today‘s quantum applications are typically hybrid,

comprising quantum and classical programs. Thus,

the different programs have to be orchestrated and

required data must be passed between them. By us-

ing workflow technologies to model these applica-

tions, one can benefit from their robustness, scalabil-

ity, and automated error handling. Additionally, they

can ease the understanding by providing a graphical

notation. However, for the execution of hybrid loops,

conducting quantum and classical programs multiple

times, the orchestration using workflows is inefficient

due to the increased latency and potential queuing

times. Instead, hybrid runtimes can be used, deploy-

ing the quantum and classical programs closely to-

gether, and optimizing their communication. In this

paper, we introduced a method to analyze quantum

workflows to detect hybrid loops, that can benefit

from hybrid runtimes. Furthermore, hybrid programs

are automatically generated based on these loops, and

the workflow is rewritten to invoke them instead of

orchestrating the loops. To validate the practical fea-

sibility of our approach, we presented a prototypical

implementation, a case study showing an exemplary

quantum workflow and how it is analyzed and rewrit-

ten, and an evaluation of the required time to con-

duct our method, as well as a runtime comparison of

a workflow before and after applying our method.

In future work, we will evaluate how intermedi-

ate information about hybrid program executions can

be extracted from the hybrid runtimes to enable live

monitoring in the workflow engine using provenance

views. Additionally, we want to extend the detection

and filtering steps by taking into account additional

non-functional requirements. Once new hybrid run-

times are offered, we plan to incorporate them into our

presented analysis and rewrite framework. Finally, we

will further evaluate our method, as well as the result-

ing speed-ups, using different workflow models.

ACKNOWLEDGEMENTS

The authors would like to thank the German Research

Foundation (DFG) for financial support of the project

within the Cluster of Excellence in Simulation Tech-

nology (EXC 2075) at the University of Stuttgart.

This work was partially funded by the BMWK project

PlanQK (01MK20005N) and the project SEQUOIA

funded by the Baden-Wuerttemberg Ministry of the

Economy, Labour and Housing.

REFERENCES

Agrawal, R., Gunopulos, D., and Leymann, F. (1998). Min-
ing Process Models from Workow Logs. In Inter-
national Conference on Extending Database Technol-
ogy, pages 467±483. Springer.

AWS (2021). Introducing Amazon Braket Hy-
brid Jobs ± Set Up, Monitor, and Efficiently
Run Hybrid Quantum-Classical Workloads.
https://aws.amazon.com/de/blogs/aws/introducing-
amazon-braket-hybrid-jobs-set-up-monitor-and-
efficiently-run-hybrid-quantum-classical-workloads.

Barzen, J. (2021). From Digital Humanities to Quantum
Humanities: Potentials and Applications. In Quan-
tum Computing in the Arts and Humanities. Springer.
arXiv:2103.11825.

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann,
F., Nowak, A., and Wagner, S. (2013). OpenTOSCA
- A Runtime for TOSCA-based Cloud Applications.
In Proceedings of the 11th International Conference
on Service-Oriented Computing (ICSOC), pages 692±
695. Springer.

Bucchiarone, A., Marconi, A., Pistore, M., and Raik, H.
(2012). Dynamic Adaptation of Fragment-based and
Context-aware Business Processes. In Proceedings
of the 19th International Conference on Web Services
(ICWS), pages 33±41. IEEE.

Camunda (2021a). Camunda BPMN Modeler. https://
camunda.com/products/camunda-bpm/modeler.

Camunda (2021b). Camunda BPMN Workflow En-
gine. https://camunda.com/products/camunda-bpm/
bpmn-engine.

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C.,
Endo, S., Fujii, K., et al. (2021). Variational Quantum
Algorithms. Nature Reviews Physics, pages 1±20.

CNCF (2021). Kubernetes. https://kubernetes.io.

Cohen-Boulakia, S., Froidevaux, C., and Chen, J.
(2012). Scientific Workflow Rewriting while Preserv-
ing Provenance. In Proceedings of the 8th Interna-
tional Conference on E-Science, pages 1±9. IEEE.

De, B. (2017). Api Management. In API Management,
pages 15±28. Springer.

Di Penta, M., Esposito, R., Villani, M. L., Codato, R.,
Colombo, M., and Di Nitto, E. (2006). WS Binder:
a Framework to enable Dynamic Binding of Compos-
ite Web Services. In Proceedings of the 2006 inter-
national workshop on Service-oriented software engi-
neering, pages 74±80.

Dumas, M., La Rosa, M., Mendling, J., and Reijers, H. A.
(2013). Fundamentals of Business Process Manage-
ment, volume 1. Springer.

Eder, J. and Liebhart, W. (1996). Workflow Recovery. In
Proceedings of the International Conference on Coop-
erative Information Systems, pages 124±134. IEEE.

Egger, D. J., Mareček, J., and Woerner, S. (2021). Warm-
starting quantum optimization. Quantum, 5:479.

Ellis, C. A. (1999). Workflow Technology. Computer Sup-
ported Cooperative Work, Trends in Software Series,
7:29±54.

Farhi, E., Goldstone, J., and Gutmann, S. (2014).
A Quantum Approximate Optimization Algorithm.
arXiv:1411.4028.

Harrow, A. W., Hassidim, A., and Lloyd, S. (2009).
Quantum Algorithm for Linear Systems of Equations.
Physical review letters, 103(15):150502.

HashiCorp (2021). Terraform. https://www.terraform.io.

Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W.,
Kandala, A., Chow, J. M., and Gambetta, J. M. (2019).
Supervised learning with quantum-enhanced feature
spaces. Nature, 567(7747):209±212.

Herschel, M., Diestelkämper, R., and Ben Lahmar, H.
(2017). A Survey on Provenance: What for? What
Form? What from? The VLDB Journal, 26(6):881±
906.

IBM (2021a). IBM Quantum delivers 120x speedup of
quantum workloads with Qiskit Runtime. https://
research.ibm.com/blog/120x-quantum-speedup.

IBM (2021b). IBM’s roadmap for building an open quan-
tum software ecosystem. https://research.ibm.com/
blog/quantum-development-roadmap.

IBM (2021c). Qiskit Runtime. https://github.com/
Qiskit-Partners/qiskit-runtime.

IBM (2021d). Qiskit Runtime Documentation.
https://qiskit.org/documentation/partners/qiskit_
runtime/tutorials/sample_vqe_program/qiskit_
runtime_vqe_program.html.

Kandala, A., Mezzacapo, A., Temme, K., Takita, M.,
Brink, M., Chow, J. M., and Gambetta, J. M. (2017).
Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets. Nature,
549(7671):242±246.

Karalekas, P. J., Tezak, N. A., Peterson, E. C., Ryan, C. A.,
da Silva, M. P., and Smith, R. S. (2020). A quantum-
classical cloud platform optimized for variational hy-
brid algorithms. Quantum Science and Technology,
5(2).

Képes, K., Breitenbücher, U., Sáez, S. G., Guth, J., Ley-
mann, F., and Wieland, M. (2016). Situation-Aware
Execution and Dynamic Adaptation of Traditional
Workflow Models. In Proceedings of the 5th Eu-
ropean Conference on Service-Oriented and Cloud
Computing (ESOCC), pages 69±83. Springer.

Khan, S. U., Awan, A. J., and Vall-Llosera, G. (2019). K-
Means Clustering on Noisy Intermediate Scale Quan-
tum Computers. arXiv:1909.12183.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F.
(2013). Winery ± A Modeling Tool for TOSCA-based
Cloud Applications. In Proceedings of the 11th Inter-
national Conference on Service-Oriented Computing
(ICSOC), pages 700±704. Springer.

LaRose, R. (2019). Overview and Comparison of Gate
Level Quantum Software Platforms. Quantum, 3.

LaRose, R. and Coyle, B. (2020). Robust data encod-
ings for quantum classifiers. Physical Review A,
102(3):032420.

Leymann, F. (1995). Supporting Business Transactions via
Partial Backward Recovery In Workflow Management
Systems. In Datenbanksysteme in Büro, Technik und
Wissenschaft, pages 51±70. Springer.

Leymann, F. and Barzen, J. (2020). The bitter truth
about gate-based quantum algorithms in the NISQ era.
Quantum Science and Technology, 5(4).

Leymann, F. and Barzen, J. (2021). Hybrid Quan-
tum Applications Need Two Orchestrations in Su-
perposition: A Software Architecture Perspective.
arXiv:2103.04320.

Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder,
B., and Wild, K. (2020). Quantum in the Cloud: Ap-
plication Potentials and Research Opportunities. In
Proceedings of the 10th International Conference on

https://camunda.com/products/camunda-bpm/modeler
https://camunda.com/products/camunda-bpm/modeler
https://camunda.com/products/camunda-bpm/bpmn-engine
https://camunda.com/products/camunda-bpm/bpmn-engine
https://kubernetes.io
https://www.terraform.io
https://research.ibm.com/blog/120x-quantum-speedup
https://research.ibm.com/blog/120x-quantum-speedup
https://research.ibm.com/blog/quantum-development-roadmap
https://research.ibm.com/blog/quantum-development-roadmap
https://github.com/Qiskit-Partners/qiskit-runtime
https://github.com/Qiskit-Partners/qiskit-runtime
https://qiskit.org/documentation/partners/qiskit_runtime/tutorials/sample_vqe_program/qiskit_runtime_vqe_program.html
https://qiskit.org/documentation/partners/qiskit_runtime/tutorials/sample_vqe_program/qiskit_runtime_vqe_program.html
https://qiskit.org/documentation/partners/qiskit_runtime/tutorials/sample_vqe_program/qiskit_runtime_vqe_program.html

Cloud Computing and Services Science (CLOSER),
pages 9±24. SciTePress.

Leymann, F. and Roller, D. (2000a). Method and computer
system for generating process management computer
programs from process models. US Patent 6,011,917.

Leymann, F. and Roller, D. (2000b). Production Workflow:
Concepts and Techniques. Prentice Hall PTR.

Liu, J., Pacitti, E., Valduriez, P., and Mattoso, M. (2015).
A Survey of Data-Intensive Scientific Workflow Man-
agement. Journal of Grid Computing, 13(4):457±493.

Maciejewski, F. B., Zimborás, Z., and Oszmaniec, M.
(2020). Mitigation of readout noise in near-term quan-
tum devices by classical post-processing based on de-
tector tomography. Quantum, 4:257.

McCaskey, A. J., Dumitrescu, E. F., Liakh, D. I., and Hum-
ble, T. S. (2018). Hybrid Programming for Near-term
Quantum Computing Systems. In 2018 IEEE Interna-
tional Conference on Rebooting Computing (ICRC),
pages 1±12. IEEE.

McClean, J. R., Romero, J., Babbush, R., and Aspuru-
Guzik, A. (2016). The theory of variational hy-
brid quantum-classical algorithms. New Journal of
Physics, 18(2).

Mundbrod, N., Grambow, G., Kolb, J., and Reichert, M.
(2015). Context-Aware Process Injection: Enhancing
Process Flexibility by Late Extension of Process In-
stances. In On the Move to Meaningful Internet Sys-
tems (OTM), pages 127±145. Springer.

Müller, R., Greiner, U., and Rahm, E. (2004). Agent-
Work: a workflow system supporting rule-based
workflow adaptation. Data & Knowledge Engineer-
ing, 51(2):223±256.

Nielsen, M. A. and Chuang, I. (2010). Quantum Computa-
tion and Quantum Information. AAPT.

OASIS (2007). Web Services Business Process Execu-
tion Language (WS-BPEL) Version 2.0. Organization
for the Advancement of Structured Information Stan-
dards.

OASIS (2013). Topology and Orchestration Specification
for Cloud Applications (TOSCA) Version 1.0.

OMG (2011). Business Process Model and Notation
(BPMN) Version 2.0. Object Management Group.

Orban, D. (2011). Templating and Automatic Code Genera-
tion for Performance with Python. Cahier du GERAD
G, 2011:30.

Preskill, J. (2018). Quantum Computing in the NISQ era
and beyond. Quantum, 2.

Rinderle-Ma, S. and Reichert, M. (2010). Advanced Mi-
gration Strategies for Adaptive Process Management
Systems. In Proceedings of the 12th IEEE Conference
on Commerce and Enterprise Computing, pages 56±
63. IEEE.

Salm, M., Barzen, J., Breitenbücher, U., Leymann, F.,
Weder, B., and Wild, K. (2020). The NISQ Analyzer:
Automating the Selection of Quantum Computers for
Quantum Algorithms. In Proceedings of the 14th

Symposium and Summer School on Service-Oriented
Computing (SummerSOC), pages 66±85. Springer.

Sim, S., Johnson, P. D., and Aspuru-Guzik, A. (2019).
Expressibility and Entangling Capability of Param-
eterized Quantum Circuits for Hybrid Quantum-
Classical Algorithms. Advanced Quantum Technolo-
gies, 2(12):1900070.

University of Stuttgart (2021a). Demo Video. https://youtu.
be/cXOkt0vVivo.

University of Stuttgart (2021b). Evaluation Data.
https://github.com/UST-QuAntiL/qprov-content/tree/
main/workflow-analysis-and-rewrite.

University of Stuttgart (2021c). QuantME Trans-
formation Framework. https://github.com/UST-
QuAntiL/QuantME-TransformationFramework.

University of Stuttgart (2021d). Quantum Work-
flow Use Cases. https://github.com/UST-QuAntiL/
QuantME-UseCases.

Van Der Aalst, W. (2012). Process mining. Communica-
tions of the ACM, 55(8):76±83.

Vietz, D., Barzen, J., Leymann, F., Weder, B., and Yus-
supov, V. (2021). An Exploratory Study on the Chal-
lenges of Engineering Quantum Applications in the
Cloud. In Proceedings of the 2nd Quantum Software
Engineering and Technology Workshop (Q-SET21),
pages 1±12. CEUR Workshop Proceedings.

Waters, B. R., Balfanz, D., Durfee, G., and Smetters, D. K.
(2004). Building an Encrypted and Searchable Audit
Log. In NDSS, volume 4, pages 5±6. Citeseer.

Weder, B., Barzen, J., and Leymann, F. (2021a). MOD-
ULO: Modeling, Transformation, and Deployment of
Quantum Workflows. In Proceedings of the 25th In-
ternational Enterprise Distributed Object Computing
Workshop (EDOCW), pages 341±344. IEEE.

Weder, B., Barzen, J., Leymann, F., and Salm, M. (2021b).
Automated Quantum Hardware Selection for Quan-
tum Workflows. Electronics, 10(8).

Weder, B., Barzen, J., Leymann, F., Salm, M., and Wild, K.
(2021c). QProv: A provenance system for quantum
computing. IET Quantum Communication, 2(4):171±
181.

Weder, B., Barzen, J., Leymann, F., and Vietz, D. (2022).
Quantum Software Development Lifecycle. Quantum
Software Engineering. arXiv:2106.09323.

Weder, B., Breitenbücher, U., Képes, K., Leymann, F., and
Zimmermann, M. (2020a). Deployable Self-contained
Workflow Models. In Proceedings of the 8th European
Conference on Service-Oriented and Cloud Comput-
ing (ESOCC), pages 85±96. Springer.

Weder, B., Breitenbücher, U., Leymann, F., and Wild, K.
(2020b). Integrating Quantum Computing into Work-
flow Modeling and Execution. In Proceedings of the
13th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC 2020), pages 279±291.
IEEE.

Weigold, M., Barzen, J., Leymann, F., and Vietz, D. (2021).
Patterns For Hybrid Quantum Algorithms. In Pro-
ceedings of the 15th Symposium and Summer School
on Service-Oriented Computing (SummerSOC), pages
34±51. Springer.

All links were last followed on May 3, 2022.

https://youtu.be/cXOkt0vVivo
https://youtu.be/cXOkt0vVivo
https://github.com/UST-QuAntiL/qprov-content/tree/main/workflow-analysis-and-rewrite
https://github.com/UST-QuAntiL/qprov-content/tree/main/workflow-analysis-and-rewrite
https://github.com/UST-QuAntiL/QuantME-UseCases
https://github.com/UST-QuAntiL/QuantME-UseCases

