b b H Institute of Architecture of Application Systems

Serverless Parachutes: Preparing Chosen
Functionalities for Exceptional Workloads

Vladimir Yussupov, Uwe Breitenblcher, Michael Hahn, Frank Leymann

Institute of Architecture of Application Systems,
University of Stuttgart, Germany,
{yussupov, breitenbuecher, hahn, leymann}@iaas.uni-stuttgart.de

BIBTRX:

@inproceedings{Yussupov2019_ServerlessParachutes,
author = {Vladimir Yussupov and Uwe Breitenb{\"u}cher and Michael Hahn
and Frank Leymann},

title = {{Serverless Parachutes: Preparing Chosen Functionalities for
Exceptional Workloads}},

booktitle = {Proceedings of the 2019 IEEE 23rd International Enterprise
Distributed Object Computing Conference (EDOC 2019)},

publisher = {IEEE},

year = 2019,

month = oct,

pages = {226--235},

doi = {10.1109/EDOC.2019.00035}

© 2019 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Universitat Stuttgart

Germany

Serverless Parachutes: Preparing Chosen
Functionalities for Exceptional Workloads

Vladimir Yussupov, Uwe Breitenbiicher, Michael Hahn, and Frank Leymann
Institute of Architecture of Application Systems
University of Stuttgart, Universititsstrae 38, Stuttgart, Germany
Email: [vladimir.yussupov, uwe.breitenbuecher, michael.hahn, frank.leymann]@iaas.uni-stuttgart.de

Abstract—Function-as-a-Service (FaaS) is an emerging cloud
service model that enables composing applications using arbi-
trary, small, and event-driven code snippets managed by cloud
providers and that can be scaled to zero. The scalability proper-
ties of FaaS look attractive for handling rare or unexpected high
loads that affect only particular functionalities of the application.
However, deciding on the component granularity upfront or
reengineering the architecture of an entire application for rare
workloads is often a very difficult challenge or even infeasible.
In this work, we introduce a method that prepares annotated
functionalities for handling rare workloads by automatically
extracting them from the source code of the application and
additionally deploying them as FaaS functions, while keeping the
original application’s functionalities and architecture unchanged.
In this way, the benefits of FaaS can be leveraged without the
need to reengineer the application only for rare cases. We validate
our method by means of a prototype, evaluate its feasibility in a
set of experiments, and discuss limitations and future work.

Keywords-Serverless, FaaS, Function-as-a-Service, Scalability,
Failover, Annotation

I. INTRODUCTION

Cloud computing is an essential building block in the IT
landscape of many modern enterprises [1]. The widespread
adoption of cloud computing is the result of its substantial ben-
efits, such as elasticity and continuous deployment at global
scale [2]. One typical example is the usage of cloud compute
resources instead of buying the hardware. Unlike traditional
infrastructure investments, it is notably easier to deal with re-
dundant compute resources in the cloud, which helps reducing
costs. Likewise, using higher abstraction layers, e.g., platform
or software, helps further reducing the maintenance burden
and optimizing development and operations processes. In the
context of cloud, the serverless computing paradigm further
abstracts away the infrastructure by focusing on developing
applications using only provider-managed components. While
being a broader concept, the term serverless is often used to
describe a particular cloud service model, called Function-as-
a-Service (FaaS). FaaS hides the infrastructure by allowing to
deploy arbitrary, fine-grained, event-driven code snippets [3],
[4], which are fully managed by providers. As a result, the
scaling is automatically performed by providers, and, more-
over, FaaS deployments can be scaled to zero, allowing to pay
only for the actual usage of functions, without considering the
idle time [5]. The prominent examples of public FaaS offerings
are AWS Lambda [6] and Microsoft Azure Functions [7].

Event-driven, FaaS-hosted functions are attractive for deal-
ing with rare or unpredictable high workloads, since functions
are automatically scaled by providers without limits. However,
(i) deploying every functionality to FaaS is not often appro-
priate and can result in complex, unmanageable application
architectures with thousands of components. For example,
deploying two functionalities interacting via local calls to FaaS
results in a communication overhead, as both now need to
interact in an event-driven manner. Additionally, (ii) choosing
the right components granularity, e. g., whether it is a FaaS-
hosted function or the part of a PaaS-hosted component, is
a highly non-trivial challenge [8]-[10]. Moreover, (iii) often
it is even not possible to use FaaS for certain function-
alities as it strongly impacts the application’s architecture.
Therefore, keeping crucial application functionalities available
via FaaS requires big efforts and comes with far-reaching
design decisions—ironically, only to prepare the application
for hypothetical workloads that might never occur.

In this paper, we tackle this issues and present a method
for preparing crucial application functionalities for exceptional
workloads by leveraging the advantages of the FaaS cloud ser-
vice model without the need to change the actual architecture
of the application. In our method, parts of the application’s
source code are first enriched with annotations, which enables
the automated extraction and generation of FaaS-deployable
function bundles called serverless parachutes. These bundles
are deployed to FaaS offerings as backup routes for handling
exceptional workloads, whereas original functionalities of the
application and the application itself are used as-is in regular
cases. The most important benefit of the method is that
it does not require reengineering the original application’s
architecture or deciding on the right granularity of scalable
components upfront. To validate our method, we implement a
prototype supporting the automatic extraction, generation, and
deployment of serverless parachutes. Furthermore, we perform
an evaluation by conducting a set of experiments, discuss the
results, and outline future research directions.

The remainder of this paper is structured as follows. In Sec-
tion II, we define the problem statement, introduce a running
example, and discuss the related work. We introduce the
serverless parachutes method in Section III and elaborate on
the prototype and results of the evaluation in Section IV
and Section V. Finally, Section VI concludes this paper.

II. PROBLEM STATEMENT AND RELATED WORK

In this section, we describe the relevant background, define
the problem statement and introduce a running example. Fur-
thermore, we elaborate on the related work and its applicability
to the highlighted problems.

A. Serverless Computing and Function-as-a-Service

Historically, the term serverless has been used in different
contexts, from peer-to-peer communication and client side-
only software to RFID protocols [11]-[13]. In the context of
cloud, the concept of serverless computing describes a pro-
gramming model and architecture that focus on building ap-
plications by composing functionalities that are executed in the
cloud without the need to manage the underlying infrastruc-
ture [3]. For example, (Mobile) Backend-as-a-Service (BaaS)
and Function-as-a-Service (FaaS) service models fit into this
category. While the former focuses on combining third-party
APIs to avoid having a traditional backend system, FaaS
focuses on using provider-managed, arbitrary, event-driven,
and typically, stateless, code snippets as application building
blocks. Both BaaS and FaaS abstract away the infrastructure
and reduce the management effort and complexity, which gives
the impression that servers do not exist. However, the reduced
management efforts in no way mean that servers are absent.
Instead, tasks such as resource provisioning, monitoring, scal-
ing, and fault tolerance become a burden of cloud service
providers [3], [4]. Another important property of FaaS is that
the application logic can be scaled to zero resulting in a new
cost model where the application owner is not charged for idle
periods, which is not the case, e.g., in Platform-as-a-Service
deployments. Despite the advantages, the FaaS service model
is typically not enough on its own for composing serverless
applications and has certain limitations [14], [15]. For instance,
stateless and ephemeral FaaS functions have limited lifetime
and often need store the state in shared storage systems such as
AWS S3. These limitations are among the factors influencing
the decision on choosing the optimal component granularity
and the cloud service model.

B. Problem Statement

Failures are imminent for software at any scale [16]-[18].
Problems such as hardware failures or workload changes lead
to resource exhaustion [18] and might cause a sudden system
outage. Ironically, fault tolerance and recovery strategies might
also lead to a system failure [17], e.g., Amazon’s outage,
which happened in 2017 due to increased time of AWS S3
services recovery, affected recovery strategies of other AWS
services. Often, crucial functionalities must remain available
in exceptional cases, which lead to sudden, unrecoverable
resource exhaustion, e. g., disasters or improper infrastructure
planning. For instance, in cases of disasters, functionalities of
disaster management systems supporting assistance operations
during or after disasters must be available [19]. Dealing with
unexpected resource exhaustion is also important for hybrid
clouds, e. g., the cloud bursting [20] approach allows bursting
resources into public clouds to handle high load spikes.

Interestingly, several research works [19], [21] describe the
auto-scaling and scale-to-zero features of FaaS as a suitable so-
lution for withstanding exceptional workloads, due to the fact
that availability and reliability are guaranteed by providers.
If important functionalities could be made available as FaaS-
hosted functions, the unexpected loads can be handled by ex-
ecuting these functionalities at FaaS provider’s side. However,
despite the scaling and availability advantages of FaaS, several
important factors can complicate the process of moving chosen
functionalities to FaaS or even prevent it completely. Firstly,
adoption of FaaS requires developers to employ a specific
programming model where chosen functionalities interact in
an event-driven fashion and comply with the requirements
of FaaS providers, e.g., limited execution time. Thus, parts
of the original application’s architecture related to chosen
functionalities need to be changed to comply with the new
requirements, which introduces implementation overhead only
for handling rare, exceptional workloads. Additionally, moving
certain functionalities to FaaS might not be feasible cost- and
effort-wise, e. g., moving tightly-coupled and stateful compo-
nents introduces implementation and performance overhead.

Another important factor that increases the development
complexity is the need to decide on application components
granularity upfront, which is a non-trivial challenge [8],
[22]. For instance, several studies investigated challenges for
migrating applications to microservice architectures [23] in
industry [24], [25] and the described big issues include decom-
posing existing systems, identifying proper context boundaries,
and finding the right component granularity. Moreover, using
finer-grained components for every functionality increases the
architecture’s complexity and introduces the communication
overhead, e. g., microservice architectures typically have com-
munication overhead compared to monoliths [26]. In complex
systems consisting of multiple fine-grained components, the
communication overhead is even higher due to a larger number
of endpoints, which results in more intermediary hops needed.
Likewise, applying the FaaS paradigm to every possible func-
tionality or deciding on the right granularity upfront can be
problematic and might cause additional problems instead of
solving existing ones. Therefore, the decision which function-
alities can be moved to finer-grained service models needs to
be taken carefully as it may harm the system in the future.

Since choosing the right granularity for components upfront
and reengineering an entire application only to prepare a subset
of crucial functionalities for exceptional workloads requires
considerable efforts from development and operations, it is
often not feasible to tackle rare loads or failures. Therefore,
the research question underlying this work is “How to support
developers in preparing crucial application functionalities for
handling exceptional workloads by utilizing the FaaS cloud
service model, without the need to change the application’s
architecture?”. Our goal is to keep the original application as-
is for regular cases, while using FaaS only in exceptional cases.
To keep the entry barrier for developers as low as possible and
to minimize the development overhead, the proposed method
has to provide automation support where it is possible.

o_FShipmentServiceg[]

purchase

gl

OrderService -
o_? ProductService g[]
PrintingService g[

PrintInvoice || PrintCatalogue

printinvoice

I GeneratePDF |

Fig. 1. Excerpt of a system architecture with four components

C. Motivating Scenario

A simplified UML component diagram in Figure 1 demon-
strates an excerpt of a system architecture consisting of
four loosely-coupled components, namely OrderService, Ship-
mentService, ProductService, and PrintingService that com-
municate, e.g., via REST API calls. For the sake of brevity,
we omit the details about the internal structure of all com-
ponents except the PrintingService component, which groups
together all printing-related functionalities such as Printin-
voice, PrintCatalogue, and the internally-used GeneratePDF
functionality. The PrintingService component is not stateful
and does not require a resource layer for processing various
printing-specific requests via respective exposed interfaces.
Furthermore, since the PrintingService component comprises
interdependent functionalities related only to printing domain,
it is not further split into finer-grained, loosely-coupled com-
ponents. For instance, to produce respective PDF documents,
both PrintInvoice and PrintCatalogue functionalities depend on
the internal GeneratePDF functionality, which provides means
to generate PDF documents based on the given input.

In practice, this generic example can reflect a part of an
application dealing with, e.g., processing orders in a web
store which has all components implemented, e.g., as Java
web applications. As an example, the purchase operation
can be invoked via the interface called purchase provided
by the OrderService component. This interface can be used
only if the three remaining components are available and one
of the required interfaces, namely printlnvoice, is provided
by the PrintingService component. In case of an unexpected
failure of the PrintingService component, e. g., sudden spike of
purchase requests on Christmas, further processing becomes
not possible, leading to a full system failure. However, if
the printlnvoice interface, which depends on the PrintInvoice
and GeneratePDF functionalities, is available in an event
of failure, orders can still be processed. In the following
sections, we introduce a method for automatically preparing
chosen functionalities, e.g., the functionality provided via
the printlnvoice interface, for unexpected loads using the
FaaS service model and without reengineering the original
application, which allows it to function as-is in regular cases.

D. Related Work

In this subsection, we elaborate on related work and discuss
its applicability to the discussed problem statement.

Khadka et al. [27] introduce serviciFi, a comprehensive
method for migrating legacy code to SOA. This method
comprises multiple phases, including (i) project initiation,
(ii) identification of candidate services and their further spec-
ification, (iii) a construction and testing phase, and (iv) a
deployment, monitoring, and management phase. The overall
method is assembled from multiple fragments of existing SOA
development methods and combines numerous manual and
automated activities. While the phases of this method can serve
as a good basis, the overall method focuses on a different
problem and is too complex for applying it to our use case.
Moreover, the presence of manual activities in phases, e. g., an
extracted service might need to be refactored before the next
phase, makes it infeasible to apply this method for certain
functionalities in rare cases.

Frey and Hasselbring [28] address the problem of migrating
existing software to the cloud. A model-based approach called
CloudMIG begins with extracting the model of an existing
application, selecting the target provider’s model, i.e., a so-
called Cloud Environment Model (CEM), and generating three
artifacts, namely a target architecture, a mapping model, and a
cloud environment’s constraints violation model. Afterwards,
the generated artifacts can be adapted, evaluated, and used for
actual transformation of the existing application for the cloud.
This approach is not suitable for our needs due to several rea-
sons: (i) the approach focuses on migrating the entire system
without the intention to keep the original application working
as-is, (ii) the transformation from the generated architecture to
the chosen cloud environment is not discussed, and, according
to authors not planned to be implemented in the near future.

Kwon and Tilevich [10] introduce a collection of cloud
refactoring techniques which help to automate the process
of moving centralized applications to the cloud. Two main
components underlying presented techniques are recommen-
dation and refactoring engines. The former is responsible for
providing recommendations for suitability of functionalities
using dynamic and static code analysis techniques. The latter
helps to refactor functionalities, including extracting, wrapping
them, and adding fault-handling logic. This approach focuses
on extracting the functionalities and reengineering the original
application’s code, which is not suitable for our use case.
However, the recommendation strategies can serve as a basis
for our future work about functionality’s suitability.

Several works [29], [30] focus on FaaSification approaches
for different programming languages. The general process
involves code analysis and decomposition into functional units
and code that is not suitable for FaaS. Next, the functional
units are translated into FaaS units followed by compila-
tion and assembling of their dependencies. While providing
some insights about the FaaS-related code extraction, these
approaches are not suitable due to the focus on migrating
all application’s functions and modification of the original

purchase

purchase -
gl O—] ShipmentServicegl

OrderService)
O] ProductService El

PrintingService

@ gl

g

OrderService

-
o)

PrintingService

2 printinvoice

gl

regular path

=l

<<proxy>>

PrintInvoice || PrintCata]ogue¢

O exceptional path

Printinvoice II PrintCatalogue

printinvoice

GeneratePDF I

PrintInvoice Parachute g]
PrintInvoice |

| GeneratePDF |

GeneratePDF |

Fig. 2. The Serverless Parachutes method applied to the PrintInvoice functionality

project’s structure. For Java applications, the prototypical im-
plementation has limitations, e. g., methods located in classes
that have inner classes cannot be extracted.

Perera and Perera [31] present TheArchitect, a tool for
generating high-level, serverless and microservice-based archi-
tectures. The tool’s input wizard collects system requirements,
maps it to predefined models, generates a high-level architec-
ture, and provides a visual representation of the result. This
approach is not suitable due to several reasons: (i) the tool’s
output is a high-level architecture with no real implementation
behind it, (ii) and analyzing and migrating chosen functional-
ities of an existing system is not possible.

Asghar et al. [19] discuss suitability of serverless computing
for Disaster Management Information Systems (DMSI) based
on their specific load characteristics. During the high activity
phase, when relief operations happen after the disaster, DMSI
is overloaded with a huge number of requests, whereas during
the low activity phase, DMSI is almost idle. Such load
characteristics make FaaS a good deployment target, since the
QoS consistency will only be affected right in the beginning
of the spike due to the so-called cold start [3] problem. In
addition, this will allow saving time, which is required for
instantiation of virtual machines or pools of containers.

The strangler pattern [24], [32] describes how to grad-
vally migrate the original application to a chosen, modern
target platform, while keeping it functioning as-is without the
migrated functionalities. Eventually, the gradual removal of
functionalities leads to application being migrated completely.
Modifications of the original application makes implementa-
tions of this pattern not suitable for our stated problem.

The term code mobility [33] is used to describe a capa-
bility to dynamically modify bindings between the location
of code and the actual code snippet. There are two forms of
code mobility, namely weak and strong mobility. The former
is concerned with moving the code between computational
environments without moving the execution state, whereas the
latter allows migrating both, the code and its execution state.
In this paper, we focus on the problem of weak mobility, more
specifically, on how the chosen functionality can be shipped
to a new service model in an asynchronous fashion.

Hendrickson et al. [34] present OpenLambda, an open-
source serverless computing platform. The authors mention
that annotations identifying web resource handlers in Python’s
frameworks like Flask can be seen as a good starting point for
decomposing legacy applications for FaaS deployments.

Numerous works [35]-[38] describe applicability scenarios
for serverless computing, and FaaS in particular. The research
targets various fields such as high-performance computing,
artificial intelligence, or scientific workflows. While FaaS is
a relatively new cloud service model, the described results of
applying it to different problem domains are mainly positive.

III. THE SERVERLESS PARACHUTES METHOD

In this section, we describe the method for preparing
important functionalities of existing applications to withstand
rare or unexpected high loads caused by exceptional cases,
without changing the architecture of the original application.

The serverless parachutes method’s main idea is to provide
developers with an intuitive and automated way of preparing
crucial application functionalities for unexpected loads, with-
out reengineering or redeveloping the original application as
well as without deciding on the component granularity up-
front. In the serverless parachutes method, the chosen crucial
functionalities of an application are duplicated to FaaS de-
ployments, while keeping the original application functioning
as-is. A generated proxy component, which is decoupled from
the original application and is capable of conditional routing,
then redirects requests to this FaaS-hosted functionalities only
in exceptional, high workload cases.

Figure 2 depicts how the method can be applied to the
functionality provided via the printlnvoice interface from the
running example described in Section II-C. The generated
PrintInvoice Parachute is a FaaS-hosted function that combines
the logic of Printlnvoice and GeneratePDF sub-components
to make the functionality provided via the printlnvoice in-
terface available for exceptional cases. In the meantime, reg-
ular cases are handled by the original Printing component,
whose architecture remains unchanged. This approach avoids
(1) reengineering the original application, i.e., the architecture
of the Printing component in this example, only for exceptional

Identify ‘
Functionality

Annotate
Functionality

‘ Extract
Parachutes

%

Source Code

‘ Manual step

ﬁ Automated step

Annotated
Source Code

Parachute
Descriptors

Refined Parachute
Deployment Deployment

Bundle e_ Bundle

. amyy WTTTTTTTTTTTTTTTg % A

Automatically ﬁ’ 1 . ‘ [’ Generate Q
—0 e
Deploy ’ H Test & Refine] Deployment Bundle
\

/s

optional step

Fig. 3. A stepwise diagram of the serverless parachutes method

cases, and (ii) scaling the entire application, which leads to
cost optimizations. We refer to the deployed FaaS functionality
as a serverless parachute emphasizing on the backup nature
of the duplicated deployment.

Serverless parachutes enable an efficient, fine-grained scal-
ing by utilizing the benefits of the FaaS cloud service model
for handling exceptional workloads as described in Section II.
A simple example of a suitable candidate for extraction as
a serverless parachute is a stateless Java servlet with no
internal dependencies. To achieve such deployment duplica-
tion, both the original and the newly-created FaaS version
of the functionality must conform to the original interface
and be accessible by means of rerouting using a separate
proxy component. The rerouting happens only if a certain
condition is fulfilled, e.g., when the number of requests is
above a certain threshold or when the original functionality is
currently not available. The overall method of creating server-
less parachutes consists of six steps, namely (i) identifying
suitable functionalities, (ii) annotating them on the level of the
source code, (iii) extracting the required information about the
functionality, (iv) generating parachute deployment bundles
for the provider of choice, (v) refining and testing resulting
deployment bundles, and (vi) deploying them automatically.
Figure 3 demonstrates this process including the descriptions
of inputs and outputs for each step. In the following, we
describe every step in more detail.

A. Step 1: Identifying Suitable Functionalities

The first step of the method, as shown in Figure 3, is to iden-
tify functionalities suitable for parachute deployments. The
problem of finding suitable functionalities is not in the scope
of this work. However, we briefly discuss which functionalities
can be potential candidates for parachute deployments. In
the next steps, we assume that the functionality is already
identified and available for further processing.

Clearly, not all functionalities are suitable for migration to
cloud [10]. The most suitable functionalities for a parachute
deployment have several common characteristics, which cor-
relate with the properties of the FaaS service model. More

specifically, they are: (i) independent or easy to decouple, i.e.,
proper bounded contexts, (ii) stateless, and, (iii) preferably,
finer-grained components, e.g., having small amount of dis-
tinct functionalities. A good example is a stateless Java servlet
that handles requests and has no internal dependencies.

On the other hand, functionalities not suitable for parachut-
ing, for example, (i) cannot be decoupled without introducing
additional components, e.g., duplicate the used storage, or
(ii) are too expensive to decouple due to critical dependencies
on the source application. One example of less-suitable func-
tionality is related to code snippets, which, when decoupled,
still depend on the main application, e. g., the try-catch blocks
for fault handling. Extracting such code snippets and deploying
them to FaaS for handling main application’s faults would
require integration with the main application, which makes
conditional FaaS routing in exceptional cases not feasible:
the source application must be available and, moreover, will
become a scaling bottleneck. In general, such tightly-coupled
examples require additional reengineering and maintaining
efforts, which neglects the advantages of generating parachutes
for such functionalities.

B. Step 2: Annotate Functionalities

The second step of the method, as depicted in Figure 3,
is responsible for enriching identified functionalities with
additional meta-data by means of source code annotations.
Various additional information can be specified for defining
the parachutes behavior, e. g., desired routing conditions. Al-
though the conceptual model of annotations is uniform, the
actual implementations are language-specific. Depending on
the programming language, annotations can be implemented
differently, e.g., using Java annotations, C# attributes, or
standardized commentary-based annotations. An example of
such parachute annotations in Java is shown in Listing 1. The
ParachuteMethod annotation marks the serverless parachute
functionality. Routing condition properties describe at which
point requests have to be rerouted to the parachute, e. g., when
the main path is not available, at a specific date or certain
availability threshold. Of course, this is extensible as various

Listing 1. Example usage of parachute annotations in Java
@ParachuteMethod (
failover = true,
overUtilizationFactor = "80%",
routeOnDate = "20191224", ...)
public Response handler (Request data) {...}

routing conditions are possible and not limited to the discussed
ones. Moreover, depending on the desired level of control
during the next steps, annotations might contain more specific
directives, e. g., mapping rules for input and output parameters
in typed programming languages or a custom endpoint name
for a parachute deployment.

C. Step 3: Extract Functionalities

Step 3 shown in Figure 3 is responsible for extracting
the annotated functionalities into self-contained parachute
descriptors. Note that the parachute descriptor is still provider-
agnostic as it only contains the function’s source code with
related data such as class or method dependencies, build
scripts, or annotations specified for the next steps. For ex-
ample, a plain Java function typically cannot be deployed
directly to a provider of choice and requires additional post-
processing, e.g., AWS Lambda has specific requirements
for authoring Java functions. Parachute descriptors can be
reused for generating serverless parachutes for other supported
providers. The parachute annotations, e.g., proxy configura-
tion directives, are not retained in the extracted functionality,
but stored separately in the descriptor. The extraction process
is language-specific, hence corresponding extraction plugins
are needed to support different programming languages. For
example, extraction logic varies due to differences in type
support, e. g., strong and weak typing, or the use of different
build tools. During extraction, various information is captured
in the descriptor, including: (i) endpoint path, (ii) input and
output types, also, if needed, with the corresponding type
definitions, (iii) class, method, and variable dependencies, and
(iv) library dependencies, e.g., a naive superset of the build
script dependencies. The resulting descriptor is self-contained
and allows generating provider-specific FaaS deployments
without performing the extraction step again.

D. Step 4: Generate Serverless Parachutes

Step 4 shown in Figure 3 is responsible for generating
parachute deployment bundles that contain extracted function-
alities in provider-specific format, e. g., AWS Lambda deploy-
ment packages, together with the corresponding deployment
models, e.g., modeled by means of AWS CloudFormation
templates or using TOSCA [39]-[41] cloud modeling lan-
guage. In this step, previously created parachute descriptors
serve as input for generating the packaging format of a chosen
provider. To generate a provider-specific format from the
descriptor, the extracted method and its dependencies need
to be adapted, e.g., creating correct packages and classes,
adding specific import statements, changing method signatures
as required by the provider. Moreover, the build script might
need to be enriched with provider-specific dependencies. In

[REST API] [Web UI]

Presentation Layer

¢

Language Annotation
Libraries

JJ [Extraction Manager J

‘ Deployment Manager t Generation Manager J

Business Logic Layer

¢

[Deployment Orchestration

Artifacts Repository

Engines

A

Resource Layer

Fig. 4. The architecture of the serverless parachutes framework

cases where compilation is required, it needs to be trig-
gered, e.g., to provide an AWS-deployable JAR. Resulting
artifacts become a part of a generated deployment model
for automating the parachutes deployment. For example, an
AWS Serverless Application Model (SAM) template can be
generated to automatically deploy all generated AWS Lambda
functions. The parachute deployment bundle also includes the
generated proxy configuration files and corresponding deploy-
ment models to automate the creation of the proxy component.
Conditional routing is configured based on the annotations
provided in the second step by mapping them to supported
underlying router types such as Nginx, Envoy, or custom
routers, e. g., relying on Envoy’s extensibility mechanisms.

E. Steps 5&6: Test, Refine, and Deploy

In Step 5 and Step 6 shown in Figure 3, the generated
artifacts can be first tested and refined and then automatically
deployed. To avoid repetition, deployment automation is used
to simplify the deployment of all generated artifacts, e. g., an
AWS Cloud Formation template for proxies and an AWS SAM
template for all generated serverless parachutes. If needed, the
deployment model also includes required provider’s services,
e. g., configuration of an API Gateway to expose AWS Lambda
functions. In some cases, the generated deployment model
might require refinements such as modifying the API specifi-
cation, changing the application’s entry point, or reconfiguring
existing proxies instead of using newly-generated ones. While
there are various ways to test the deployment, including
automated solutions [42], in this paper we do not focus
on the deployment testing. Afterwards, the refined parachute
deployment bundles can be automatically deployed using a
supported deployment orchestration engine.

FE. Framework Architecture

An extensible, plugin-based system architecture of the
parachutes framework is depicted in Figure 4. The presentation
layer enables user interaction by means of an REST API and/or
a Web UL The business logic layer comprises four major

components implementing and orchestrating the introduced
method steps while supporting the extensibility through the
corresponding plugins. Language Annotation Libraries are
provided to developers for annotating the crucial functionali-
ties in application’s source code as described in Section III-B.
The Extraction Manager uses language-specific extraction
plugins for analyzing the source code and extracting parachute
descriptors as discussed in Section III-C. For generating
parachute deployment bundles, as discussed in Section III-D,
the Generation Manager component utilizes required provider-
specific generation plugins, e.g., for AWS Lambda or Mi-
crosoft Azure Functions. Finally, the Deployment Manager is
responsible for handling the automatic deployment of refined
parachute bundles as discussed in Section III-E by utilizing
respective deployment orchestration engines.

The resource layer consists of a set of supported De-
ployment Orchestration Engines, e.g., Terraform or AWS
Cloud Formation, used by the Deployment Manager and an
Artifact Repository which allows storing the artifacts produced
by the method for future reuse, e.g., to generate parachute
deployment bundles for multiple providers.

IV. PROTOTYPICAL VALIDATION

As a proof of technical feasibility, we prototypically imple-
mented the framework architecture described in Section III-F
using Java [43]. Therefore, the prototype provides an imple-
mentation of the three manager components, i.e., Extraction,
Deployment and Generation Manager, to conduct and auto-
mate the different steps of the parachute method presented
in Section III. Furthermore, a language annotation library and
an Extraction Manager plugin for applying our method to
Java applications, as well as corresponding Generation and
Deployment Manager plugins for AWS cloud provider are
implemented. The prototype exposes its functionality over a
REST API which is implemented using Jersey, an implemen-
tation of the JAX-RS specification. An OpenAPI specification
of the implemented REST API is generated using respective
Swagger tools, and a web-based visualization is accessible
through the prototype’s interface.

To enable the application of our parachute method, devel-
opers need to import the provided Java language annotation
library into their Java project for annotating desired function-
alities. Afterwards, the prototype can be used for extracting
parachutes from the annotated source code. Thus, a developer
needs to provide a link to the repository containing the source
code, which in our prototype’s case is done through providing
a GitHub URL. The respective extraction plugin clones the
repository and analyzes the source code. All found parachute
functionalities are extracted together with their dependencies
and meta-data. More specifically, all class and method depen-
dencies including the input and output types, inner classes
and methods are extracted together with the functionality
and stored in a parachute descriptor file. Furthermore, the
build scripts are extracted and included in the descriptor too.
The resulting parachute descriptor is serialized using a JSON
format which is then used as an input by the respective AWS

generation plugin. Java functions for AWS Lambda must con-
form to certain requirements, e. g., implement RequestHandler
interface, which requires importing specific AWS packages
and modifying the build script’s dependencies, e. g., a Maven
pom file’s dependency list. The AWS generation plugin creates
AWS Lambda packages for every extracted parachute by
creating a package with all related classes and build scripts,
and running the build. Afterwards, an AWS Serverless Ap-
plication Model (SAM) template is generated for automated
deployment of all generated AWS Lambdas. In addition, an
AWS Cloud Formation Template is generated for creating a
proxy component together with custom configurations based
on the provided annotations. As an example of a routing
condition, we use serverless parachutes as failover routes when
the main application is not available. To implement this routing
capability, we use Nginx web server and its configuration
of backup routes. Resulting templates are ready for testing,
refining, and deployment. We use a file system as an artifact
repository for reusing created artifacts within the prototype,
i.e., parachute descriptors and deployment bundles.

V. EVALUATION

In this section, we describe the evaluation of our approach.
First, we present the underlying evaluation methodology ap-
plied, followed by a description of the experimental setup, and,
finally, a discussion of the evaluation results.

A. Evaluation Methodology and Experimental Setup

The focus of the evaluation is to empirically analyze the
performance variation when introducing serverless parachutes
compared to the original application deployment. Based on
the running example described in Section II-C, for evaluation
we use a functionality that generates an invoice in PDF
format by taking a JSON object containing the order data
as an input. This functionality is implemented as part of
an example Java web application' and is exposed via a
REST API. The goal of evaluation is to identify the overhead
introduced by adding a custom proxy component, and analyze
the exceptional path activation time in cases when the original
functionality becomes unavailable and the parachute takes over
the processing responsibility. To achieve this, we measure
variations in response times, which are perceived by a user
calling a function based on the six scenarios discussed below.

In an application-plain scenario, the function is provided as
part of the example Java web application that is deployed to an
Apache Tomcat version 8.5 to serve incoming requests through
its REST API, without applying the serverless parachutes
method. In the second scenario called application-proxy, a
proxy in the form of an Nginx server with a simple reverse
proxy configuration is introduced to measure the response time
for the plain example application if requests are routed through
a reverse proxy, but without applying the serverless parachutes
method. The third scenario, application-failover-proxy, mea-
sures the response time for the plain example application

Ihttps://github.com/v-yussupov/parachutesmethod-exampleapp

Application

T2

scenario (1)

scenarios
(2) & (3)
LLLL LLLLL
T2 T2
TTTT

Proxy

TTTTT
11111

Load Driver

scenario (4)

API Gateway Parachute

Fig. 5. Experimental setup and evaluation scenarios in AWS infrastructure,
using EC2 and Lambda services

accessed via the custom proxy introduced by our method
(cf. Section III-D), which is configured to support exceptional
cases rerouting for the serverless parachutes method based
on an Nginx server. The required custom proxy configuration
is generated as a part of the parachute deployment bundle.
In the fourth scenario called parachute-plain, the response
times are measured for the direct communication with the
functionality extracted and deployed as a serverless parachute.
The extraction, generation, and deployment to AWS Lambda
are performed using the prototype, with manual refinement of
the endpoints information and API Gateway requests mapping.
In the fifth scenario, parachute-failover-proxy, we measure the
response time for the parachute via the introduced custom
proxy configured to support rerouting to serverless parachutes.

In the sixth scenario, exceptional-path-activation, we eval-
uate the times needed to switch from the regular path to ex-
ceptional path and vice versa in cases when the application is
not available. In this scenario, we measure the response times
during the following steps: (i) the functionality is accessed
via the regular path (cf. application-failover-proxy scenario),
(ii) after four minutes, the failover is triggered by stopping
the Tomcat to route incoming requests to the parachute (cf.
parachute-failover-proxy scenario), (iii) after additional four
minutes, the Tomcat is started again to restore the regular
path. The response times are analyzed to identify the average
activation time needed for parachutes to take over. In addition,
we analyze the average deactivation time needed to return to
the regular path when the application becomes available again.

The experimental environment is set up in the AWS cloud
and comprises three AWS EC2 t2.micro (1 vCPU, 1 Gb RAM)
instances and one AWS Lambda instance (512 Mb memory)
exposed by means of the AWS API Gateway. EC2 instances
host: (i) Apache JMeter? as a load driver, (ii) Nginx as a proxy
(either a reverse proxy or a failover proxy configuration),
and (iii) example Java web application deployed to Apache
Tomcat. Figure 5 depicts the experimental setup and communi-
cation paths for these five scenarios using a set of official AWS

2 Apache JMeter: http://jmeter.apache.org/

29,83 29,50 29,50 30,00

P IR S—
28,83 29,33 29,17 29,00

—+—application-plain

—o-application-proxy
application-failover-proxy

—+—parachute-plain

parachute-failover-proxy

Avg. Response Time (in ms)
=
(<))

00

1 2 3 4 5
Load Bursts

Fig. 6. Average response time in milliseconds (ms) for the load bursts of all
scenarios.

Architecture Icons>. For each of the six scenarios, a workload
consisting of random 2KB JSON HTTP requests is generated.
The workload is distributed among a warm-up phase (w) with
2000 requests followed by an experimental phase comprising
a set of 31000 requests sent in five load bursts (i) for each
user according to the following function:

£

m(i) =w+»_ 27"-1000 | w = 2000
=1

Where m(i) reflects the total number of requests send until
the i-th load burst with an increase of requests to the power
of two across the load burst.

For the failover scenario requests are sent constantly by five
concurrent users without any load bursts after the warmup-
phase to measure the failover time when the function at the
Tomcat becomes unavailable and Nginx redirects all incoming
requests to the parachute deployed at AWS Lambda.

To conduct the workload for each of the defined evaluation
scenarios, we use Apache JMeter version 5.1.1. We created
a JMeter test plan for each of the introduced six scenarios
which concurrently sends the above defined workload for five
concurrent users to the endpoint of the function. To alleviate
the effect of outliers in the experimental results, we execute
six rounds of each scenario and calculate the average response
time for each load burst. All JMeter test plans and evaluation
results are available online®.

B. Experimental Results

Figure 6 demonstrates the evaluation results for the first five
scenarios. The total amount of requests sent when evaluating
six described scenarios is around 5.9 million requests. For the
application-plain scenario the response time is approximately
7ms, while the average response time for a direct AWS
Lambda communication in the parachute-plain scenario is
approximately 19ms. The increase in response time of approx-
imately 12ms for the parachute-plain scenario might be due

3https://aws.amazon.com/architecture/icons
“https://github.com/v-yussupov/parachutesmethod-evaluation

http://jmeter.apache.org/

to the fact that the AWS Lambda is invoked via the AWS API
Gateway, which needs to, e. g., map requests and responses or
convert the response into a binary format. When introducing
the failover proxy in the parachute-failover-proxy scenario, the
response time slightly increases to approximately 21ms. This
shows that introducing a failover proxy before a parachute
does only result in an overhead of approximately 3ms. Almost
identical average response times with approximately 30ms are
captured for the application-proxy and application-failover-
proxy scenarios. The difference between communication with
the application directly or via the proxy is consistent across
all bursts and is approximately 23ms.

For the sixth scenario, we evaluated the exceptional path’s
activation and deactivation time. The average time required for
activating the exceptional path is approximately 3.3 seconds,
which is strongly influenced by the cold start problem [3], i.e.,
the initialization time required for spinning up the first instance
of a function. Within our experiments, it took only 4-5 requests
until the response time from the activated parachute reduced
significantly towards the average response times measured in
the other five scenarios. On the opposite, the deactivation
time, i.e., switching back from the parachute to the original
application, was in average 380ms. Furthermore, the failover
performance remained constant over all executed six evalua-
tion rounds, making our parachute method applicable to events
of high and unexpected loads.

In general, the evaluation results indicate that adding the
failover proxy component, which reroutes traffic between the
application and AWS Lambda function, introduces an over-
head that has to be considered when applying the serverless
parachutes method. Therefore, in future work we plan to
optimize our method to decrease the performance overhead
as well as conduct an extended evaluation where we measure
the influence of different types of extracted functions, varying
request sizes, proxy configurations, and other cloud providers.

VI. CONCLUSION AND FUTURE WORK

In this work we presented a method for preparing cho-
sen functionalities of existing or developed applications to
withstand unexpected loads caused by exceptional cases. Our
method leverages the advantages of the FaaS cloud service
model by generating and automatically deploying FaaS ver-
sions of the chosen functionalities, while keeping the archi-
tecture of the original application untouched and adapting
the overall system architecture with generated and configured
proxy components. Chosen functionalities are annotated on
the level of source code and then automatically extracted into
parachute descriptors, which are used to generate deployable
parachutes for chosen cloud service providers. As a proof of
concept, we implemented a prototype supporting automatic ex-
traction, generation, and deployment of serverless parachutes
for Java projects and AWS cloud provider. Furthermore, we
evaluated our method by conducting a set of experiments and
estimating the overhead introduced by the generated proxy
components and measuring the exceptional path activation/de-
activation times. The overhead for a generated proxy compo-

nent shown in our preliminary evaluation results need to be
taken into consideration. The extracted parachutes demonstrate
a stable response time and nearly 100% success rate when
the original application becomes unavailable. The evaluation
results demonstrate that our method is applicable as a backup
strategy for cases when unexpected, high loads target crucial
application functionalities.

Apart from using it as a backup strategy, the serverless
parachutes method can be used in alternative application
scenarios. One obvious example is an intermediate step before
strangulating the functionality, e.g., blue-green or canary
deployments. In case a FaaS deployment of the functional-
ity is eventually favored over the original functionality, the
method can be extended with additional steps, e.g., analyze
the dependencies and strip off the annotated functionality.
Interestingly, the method can be applied to both, existing and
newly-developed applications. Another application scenario is
a simplification of a loosely-coupled architecture development
following a monolith-first approach [44]. Here, the to-be-
moved functionalities can be annotated and tested in parachute
deployments without affecting the monolith’s development.

In future work, we plan to perform an extended evalua-
tion, which will include different payload sizes, programming
languages, cloud providers, and proxy settings. We intend to
further optimize the proxy generation and configuration as
well as to introduce support for different proxy types, e.g.,
using the extensibility features of Envoy. Furthermore, we plan
to enrich our prototype with additional plugins for extraction
and generation steps to support other programming languages
and cloud providers, including open source FaaS platforms
as well as to extend the supported annotation types and to
investigate other ways of applying our method, e. g., using the
ideas of Aspect-Oriented Programming [45]. One optimiza-
tion strategy that we intend to explore is reconfiguration of
existing components in the application’s deployment instead
of introducing new proxies, e.g., application load balancers
can be reconfigured to avoid additional overhead.

In addition, there are several interesting research ques-
tions, which can help extending and enhancing the parachutes
method. Firstly, we plan to investigate how the parachutes
method can be extended to support strong code mobility [33],
and, in particular, remote cloning mechanism. With remote
cloning, the chosen functionality can be dynamically extracted
from the source application at runtime, i.e., the application
is dynamically adapted to scale only its certain parts. An-
other question is to provide developers with the guidelines
and recommendations on which functionalities are suitable
for parachuting them, e.g., by means of profiling functions
using metrics like the number of dependencies or presence of
database operations in the code.

ACKNOWLEDGMENT

This work is partially funded by the European Union’s Hori-
zon 2020 research and innovation project RADON (825040).
We would also like to thank the three anonymous reviewers,
whose insightful feedback helped to improve this paper.

[2]
[3]

[5]
[6]
[7]
[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

P. M. Mell and T. Grance, “Sp 800-145. the NIST definition of cloud
computing,” Gaithersburg, MD, United States, Tech. Rep., 2011.

Y. Izrailevsky and C. Bell, “Cloud reliability,” IEEE Cloud Computing,
vol. 5, no. 3, pp. 39-44, 2018.

I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” in Research Advances
in Cloud Computing. Springer, 2017, pp. 1-20.

Cloud Native Computing Foundation (CNCF). (2018, September)
CNCF Serverless Whitepaper v1.0. [Online]. Available: https://github.
com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview

A. Eivy, “Be wary of the economics of” serverless” cloud computing,”
IEEE Cloud Computing, vol. 4, no. 2, pp. 6-12, 2017.

Amazon Web Services, Inc. (2019, February) AWS Lambda. [Online].
Available: https://aws.amazon.com/lambda

Microsoft. (2019, February) Microsoft Azure Functions. [Online].
Available: https://azure.microsoft.com/en-us/services/functions

N. Kulkarni and V. Dwivedi, “The role of service granularity in a
successful soa realization a case study,” in Services-Part I, 2008. IEEE
Congress on. 1EEE, 2008, pp. 423-430.

O. Mustafa and J. M. Gémez, “Optimizing economics of microservices
by planning for granularity level,” Experience Report, 2017.

Y.-W. Kwon and E. Tilevich, “Cloud refactoring: automated transitioning
to cloud-based services,” Automated Software Engineering, vol. 21,
no. 3, pp. 345-372, 2014.

W. Ye, A. I. Khan, and E. A. Kendall, “Distributed network file
storage for a serverless (p2p) network,” in The 11th IEEE International
Conference on Networks, 2003. ICON2003. 1EEE, 2003, pp. 343-347.
C. C. Tan, B. Sheng, and Q. Li, “Secure and serverless rfid authentication
and search protocols,” IEEE Transactions on Wireless Communications,
vol. 7, no. 4, pp. 1400-1407, 2008.

G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of
serverless computing and function-as-a-service (faas) in industry and
research,” arXiv preprint arXiv:1708.08028, 2017.

J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One step
forward, two steps back,” arXiv preprint arXiv:1812.03651, 2018.

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing microser-
vice performance,” in 2018 IEEE International Conference on Cloud
Engineering (IC2E). 1EEE, 2018, pp. 159-169.

R. N. Charette, “Why software fails [software failure],” leee Spectrum,
vol. 42, no. 9, pp. 42-49, 2005.

P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya, and
R. Ranjan, “Emergent failures: Rethinking cloud reliability at scale,”
IEEE Cloud Computing, vol. 5, no. 5, pp. 12-21, 2018.

B. Maurer, “Fail at scale,” Queue, vol. 13, no. 8, p. 30, 2015.

T. Asghar, S. Rasool, M. Igbal, Z. ul Qayyum, A. N. Mian, and
G. Ubakanma, “Feasibility of serverless cloud services for disaster
management information systems,” in 2018 IEEE 20th International
Conference on High Performance Computing and Communications;
IEEE 16th International Conference on Smart City; IEEE 4th Interna-
tional Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 2018, pp. 1054-1057.

T. Guo, U. Sharma, P. Shenoy, T. Wood, and S. Sahu, “Cost-aware cloud
bursting for enterprise applications,” ACM Transactions on Internet
Technology (TOIT), vol. 13, no. 3, p. 10, 2014.

K. Coleman, F. Esposito, and R. Charney, “Speeding up children reuni-
fication in disaster scenarios via serverless computing,” in Proceedings
of the 2nd International Workshop on Serverless Computing. ACM,
2017, pp. 5-5.

O. Mustafa, J. M. Gémez, M. Hamed, and H. Pargmann, “Granmicro:
A black-box based approach for optimizing microservices based appli-
cations,” in From Science to Society. Springer, 2018, pp. 283-294.
S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc.”, 2015.

D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: an empirical investigation,”
IEEE Cloud Computing, no. 5, pp. 22-32, 2017.

P. Di Francesco, P. Lago, and 1. Malavolta, “Migrating towards microser-
vice architectures: an industrial survey,” in 2018 IEEE International
Conference on Software Architecture (ICSA). 1EEE, 2018.

”»

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil, “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud,” in Computing
Colombian Conference (10CCC), 2015 10th. 1EEE, 2015, pp. 583-590.
R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage, “A method
engineering based legacy to soa migration method,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM). 1EEE,
2011, pp. 163-172.

S. Frey and W. Hasselbring, “The cloudmig approach: Model-based
migration of software systems to cloud-optimized applications,” Interna-
tional Journal on Advances in Software, vol. 4, no. 3 and 4, pp. 342-353,
2011.

J. Spillner, “Transformation of python applications into function-as-a-
service deployments,” arXiv preprint arXiv:1705.08169, 2017.

J. Spillner and S. Dorodko, “Java code analysis and transformation into
aws lambda functions,” arXiv preprint arXiv:1702.05510, 2017.

K. J. P. G. Perera and I. Perera, “Thearchitect: A serverless-
microservices based high-level architecture generation tool,” in 2018
IEEE/ACIS 17th International Conference on Computer and Information
Science (ICIS), June 2018, pp. 204-210.

M. Fowler. (2004, June) StranglerApplication. [Online]. Available:
https://www.martinfowler.com/bliki/Strangler Application.html

A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Transactions on software engineering, vol. 24, no. 5, pp. 342-361,
1998.

S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” Elastic, vol. 60, p. 80, 2016.

X. Geng, O. Ma, Y. Pei, Z. Xu, W. Zeng, and J. Zou, “Research on
early warning system of power network overloading under serverless
architecture,” in 2018 2nd IEEE Conference on Energy Internet and
Energy System Integration (EI2). 1EEE, 2018, pp. 1-6.

L. Baresi, D. F. Mendonga, and M. Garriga, “Empowering low-latency
applications through a serverless edge computing architecture,” in Euro-
pean Conference on Service-Oriented and Cloud Computing. Springer,
2017, pp. 196-210.

M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with hyperflow, aws
lambda and google cloud functions,” Future Generation Computer
Systems, 2017.

P. Dziurzanski, J. Swan, and L. Soares Indrusiak, “Value-based manufac-
turing optimisation in serverless clouds for industry 4.0,” in Proceedings
of the Genetic and Evolutionary Computation Conference. York, 2018.
U. Breitenbiicher et al., “Combining declarative and imperative cloud
application provisioning based on tosca,” in Proceedings of the IEEE
International Conference on Cloud Engineering (IEEE IC2E 2014).
IEEE Computer Society, March 2014, pp. 87-96.

M. Wurster, U. Breitenbiicher, K. Képes, F. Leymann, and V. Yussupov,
“Modeling and Automated Deployment of Serverless Applications using
TOSCA,” in Proceedings of the IEEE 11th International Conference on
Service-Oriented Computing and Applications (SOCA). 1EEE Computer
Society, 2018, pp. 73—S80.

V. Yussupov, M. Falkenthal, O. Kopp, F. Leymann, and M. Zim-
mermann, “Secure Collaborative Development of Cloud Application
Deployment Models,” in Proceedings of The 12" International Con-

ference on Emerging Security Information, Systems and Technologies

(SECURWARE 2018). Xpert Publishing Services, 2018, pp. 48-57.
M. Wurster, U. Breitenbiicher, O. Kopp, and F. Leymann, “Modeling and
Automated Execution of Application Deployment Tests,” in Proceedings
of the IEEE 22nd International Enterprise Distributed Object Computing
Conference (EDOC). 1EEE Computer Society, 2018, pp. 171-180.
(2019, May) Prototypical implementation of the Serverless
Parachutes Framework. [Online]. Available: https:/github.com/
v-yussupov/parachutesmethod-framework/releases/tag/v0.1.0

M. Fowler. (2015, June) StranglerApplication. [Online]. Available:
https://www.martinfowler.com/bliki/MonolithFirst.html

G. Kiczales and M. Mezini, “Aspect-oriented programming and modular
reasoning,” in Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005. 1EEE, 2005, pp. 49-58.

https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://aws.amazon.com/lambda
https://azure.microsoft.com/en-us/services/functions
https://www.martinfowler.com/bliki/StranglerApplication.html
https://github.com/v-yussupov/parachutesmethod-framework/releases/tag/v0.1.0
https://github.com/v-yussupov/parachutesmethod-framework/releases/tag/v0.1.0
https://www.martinfowler.com/bliki/MonolithFirst.html

